Special Topic: Flexible Aerodynamic Deceleration Technologies

Fluid-solid coupled dynamic simulations of flexible parachute based on ANCF and SPH

  • Qingjun LI ,
  • Yuanyuan LU ,
  • Fangnuan XU ,
  • Bo WANG
Expand
  • 1.School of Aeronautics and Astronautics,Sun Yat-sen University,Shenzhen 518107,China
    2.Beijing Space Mechanics & Electricity,Beijing 100094,China
    3.Department of Engineering Mechanics,Northwestern Polytechnical University,Xi’an 710072,China
    4.Shenzhen Research Institute,Northwestern Polytechnical University,Shenzhen 518057,China
E-mail: bowang@nwpu.edu.cn

Received date: 2024-06-13

  Revised date: 2024-07-19

  Accepted date: 2024-09-26

  Online published: 2024-10-15

Supported by

National Natural Science Foundation of China(12172282);Laboratory of Aerospace Entry, Descent and Landing Technology;Fundamental Research Funds for the Central Universities

Abstract

For the dynamic problem of the coupled fluid-structure between the parachute and air flow, and compared with the classic method, the Absolute Nodal Coordinate Formulation (ANCF) can overcome the strong coupling problem of elastic deformation and rigid deformation. In this paper, the method of ANCF is used to build up a mechanical model of flexible parachute rope and canopy. In addition, as the method of Smoothed Particle Hydrodynamics (SPH) can capture the fast-moving interface and free surface when the flow field is greatly deformed, SPH is adopted to simulate the air flow field. The coupling effect between fluid particles and flexible structures is described through the spring-damping model. Fluid-structure coupling dynamics is then conducted to investigate the dynamic behaviours of the flexible parachute. Through the numerical examples, it is found that with the increase of the speed of the fluid, the effective projected area of the parachute is decreased slightly, whereas the variation amplitude of the effective projected area is increased significantly. The findings of this paper are useful for the design of flexible parachutes.

Cite this article

Qingjun LI , Yuanyuan LU , Fangnuan XU , Bo WANG . Fluid-solid coupled dynamic simulations of flexible parachute based on ANCF and SPH[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(1) : 630821 -630821 . DOI: 10.7527/S1000-6893.2024.30821

References

1 何青松, 王立武, 王寒冰, 等. 航天器海上伞降回收技术发展与展望[J]. 航天器工程202130(4): 124-133.
  HE Q S, WANG L W, WANG H B,et al. Spacecraft parachute offshore recovery development and prospect[J]. Spacecraft Engineering202130(4):124-133 (in Chinese).
2 贾贺, 邹天琪, 荣伟, 等. 不同行星大气下直径比对降落伞气动特性的影响研究[J]. 航天返回与遥感. 202344(1): 70-83.
  JIA H, ZOU T Q, RONG W, et al. Influence of diameter ratio on the aerodynamic performance of parachute system under different atmospheric conditions [J]. Spacecraft Recovery & Remote Sensing202344(1): 70-83 (in Chinese).
3 徐欣, 贾贺, 陈雅倩, 等. 织物透气性对火星用降落伞气动特性影响机理[J]. 航空学报202243(12): 126289.
  XU X, JIA H, CHEN Y Q, et al. Influence mechanism of fabric permeability of canopy on aerodynamic performance of Mars parachute[J]. Acta Aeronautica et Astronautica Sinica202243(12): 126289 (in Chinese).
4 柯鹏, 杨春信, 杨雪松, 等. 重型货物空投系统过程仿真及特性分析[J]. 航空学报200627(5): 856-860.
  KE P, YANG C X, YANG X S, et al. System simulation and analysis of heavy cargo airdrop system[J]. Acta Aeronautica et Astronautica Sinica200627(5): 856-860 (in Chinese).
5 孙志鸿, 仇博文, 余莉, 等. 伞衣织物微孔射流透气特性[J]. 清华大学学报(自然科学版). 202363(3): 330-337.
  SUN Z H, QIU B W, YU L,et al. Micropore jet permeability characteristics of the canopy fabric[J]. Journal of Tsinghua University (Science and Technology)202363(3): 330-337 (in Chinese).
6 王学, 冯志刚, 高普云, 等. 降落伞可靠性评定及其试验量决策[J]. 宇航学报201031(6): 1685-1689.
  WANG X, FENG Z G, GAO P Y, et al. Parachute reliability assessment and decision-making of experiment times[J]. Journal of Astronautics201031(6): 1685-1689 (in Chinese).
7 高畅, 李岩军, 余莉, 等. 帆片结构张满度变化对环帆伞气动性能的影响[J]. 清华大学学报(自然科学版)202363(3): 322-329.
  GAO C, LI Y J, YU L, et al. Effect of sail fullness on the aerodynamic performance of ringsail parachutes[J]. Journal of Tsinghua University (Science and Technology)202363(3): 322-329 (in Chinese).
8 简相辉, 金哲岩. 降落伞工作过程数值模拟研究综述[J]. 航空科学技术201627(10): 1-7.
  JIAN X H, JIN Z Y. Review on the development of numerical simulations on parachutes[J]. Aeronautical Science & Technology201627(10): 1-7 (in Chinese).
9 昌飞, 贾贺. 基于BP神经网络的降落伞气动力参数辨识[J]. 航天返回与遥感202445(2): 19-28.
  CHANG F, JIA H. Aerodynamic parameter estimation of parachute based on BP neural network[J]. Spacecraft Recovery & Remote Sensing202445(2): 19-28 (in Chinese).
10 刘钒, 舒昌, 刘刚. 基于IB-LBFS和绝对节点坐标法的降落伞柔性结构流固耦合数值模拟[J]. 气体物理20205(3): 59-68.
  LIU F, SHU C, LIU G. Fluid-structure interaction simulation of parachute based on IB-LBFS and absolute nodal coordinate formulation[J]. Physics of Gases20205(3): 59-68 (in Chinese).
11 XUE X P, WEN C Y. Review of unsteady aerodynamics of supersonic parachutes[J]. Progress in Aerospace Sciences2021125: 100728.
12 CAO Y H, NIE S, WU Z L. Numerical simulation of parachute inflation: A methodological review[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2019233(2): 736-766.
13 贾贺, 荣伟, 陈国良. 基于LS-DYNA软件的降落伞充气过程仿真研究[J]. 航天器环境工程201027(3): 367-373.
  JIA H, RONG W, CHEN G L. The simulation of parachute inflation process based on LS-DYNA[J]. Spacecraft Environment Engineering201027(3): 367-373 (in Chinese).
14 CHEN B Q, WANG Y D, ZHAO C D, et al. Numerical visualization of drop and opening process for parachute-payload system adopting fluid?-?solid coupling simulation[J]. Journal of Visualization202225(2): 229-246.
15 ZHU H, TAO J, SUN Q L, et al. Effect of shear modulus on the inflation deformation of parachutes based on fluid-structure interaction simulation[J]. Sustainability202315(6): 5396.
16 YANG X, YU L, LIU M, et al. Fluid structure interaction simulation of supersonic parachute inflation by an interface tracking method[J]. Chinese Journal of Aeronautics202033(6): 1692-1702.
17 NIE S C, YU L, LI Y J, et al. Fluid structure interaction of supersonic parachute with material failure[J]. Chinese Journal of Aeronautics202336(10): 90-100.
18 KIM Y, PESKIN C S. 3-D Parachute simulation by the immersed boundary method[J]. Computers & Fluids200938(6): 1080-1090.
19 BOUSTANI J, BARAD M F, KIRIS C C, et al. An immersed boundary fluid-structure interaction method for thin, highly compliant shell structures[J]. Journal of Computational Physics2021438: 110369.
20 BOUSTANI J, BARAD M F, KIRIS C C, et al. An immersed interface methodology for simulating supersonic spacecraft parachutes with fluid?-?structure interaction[J]. Journal of Fluids and Structures2022114: 103742.
21 LIU M B, ZHANG Z L. Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions[J]. Science China Physics, Mechanics & Astronomy, 201962(8): 984701.
22 XU F, WANG J Y, YANG Y, et al. On methodology and application of smoothed particle hydrodynamics in fluid, solid and biomechanics[J]. Acta Mechanica Sinica202339(2): 722185.
23 孙鹏, 陈晨, 李凤鸣, 等. 基于SPH方法的降落伞展开过程数值研究[J]. 计算机仿真201734(8): 89-94.
  SUN P, CHEN C, LI F M, et al. Numerical study of parachute spreading process based on SPH method[J]. Computer Simulation201734(8): 89-94 (in Chinese).
24 CHENG H, CHEN C, LIU X H, et al. Numerical study of parachute inflation process based on smoothed particle hydrodynamics fluid structure interaction method[J]. Journal of Industrial Textiles201847(6): 1038-1059.
25 姚向茹, 余莉, 吴琼. 降落伞稳降阶段的SPH方法数值模拟[J]. 航天返回与遥感201637(3): 48-54.
  YAO X R, YU L, WU Q. Numerical simulation of steady-state descent phase of parachute based on SPH method[J]. Spacecraft Recovery & Remote Sensing201637(3): 48-54 (in Chinese).
26 SHABANA A A. An overview of the ANCF approach, justifications for its use, implementation issues, and future research directions[J]. Multibody System Dynamics202358(3): 433-477.
27 OTSUKA K, MAKIHARA K, SUGIYAMA H. Recent advances in the absolute nodal coordinate formulation: Literature review from 2012 to 2020[J]. Journal of Computational and Nonlinear Dynamics202217(8): 080803.
28 LIU F, LIU G, SHU C. Fluid-structure interaction simulation based on immersed boundary-lattice Boltzmann flux solver and absolute nodal coordinate formula[J]. Physics of Fluids202032(4): 047109.
29 HU W, TIAN Q, HU H Y. Dynamic simulation of liquid-filled flexible multibody systems via absolute nodal coordinate formulation and SPH method[J]. Nonlinear Dynamics201475(4): 653-671.
30 KONG W Z, TIAN Q. Dynamics of fluid-filled space multibody systems considering the microgravity effects[J]. Mechanism and Machine Theory2020148: 103809.
31 HU W, TIAN Q, HU H Y. Dynamic fracture simulation of flexible multibody systems via coupled finite elements of ANCF and particles of SPH[J]. Nonlinear Dynamics201684(4): 2447-2465.
32 GERSTMAYR J, SHABANA A A. Analysis of thin beams and cables using the absolute nodal co-ordinate formulation[J]. Nonlinear Dynamics200645(1): 109-130.
33 ZHAO J, TIAN Q, HU H Y. Modal analysis of a rotating thin plate via absolute nodal coordinate formulation[J]. Journal of Computational and Nonlinear Dynamics20116(4): 1.
34 刘晓曦. 基于改进核函数的SPH方法及其数值模拟[D]. 哈尔滨: 哈尔滨工程大学, 2023.
  LIU X X. SPH method based on improved kernel function and its numerical simulation[D]. Harbin: Harbin Engineering University, 2023 (in Chinese).
Outlines

/