ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aerodynamic configuration of distributed ducted fan with complex strong interference effect and performance influence
Received date: 2024-06-07
Revised date: 2024-07-16
Accepted date: 2024-10-10
Online published: 2024-10-15
Supported by
2025 Ningbo Key Scientific and Technological Project(2022Z040)
The distributed ducted fan power system is considered as one of the most potential power systems for the next generation civil aircraft design. The complex aerodynamic coupling between ducted fan group and wing/flap and the influence law of propulsion performance restricts the development of new concept distributed electric propulsion vehicle. Using CFD numerical simulation and ground test, this paper studies the aerodynamic configurations and parameter influence mechanism of distributed ducted fans, such as the single ducted fan, ducted fan group, ducted fan group with flap. The distance between non-fusing ducted fan groups, the shape of fusing ducted fan groups, the number of ducted fans, and the influence of the jet flow on the propulsion performance of the ducted fan groups are analyzed to explore the effects of different configurations of distributed culvert power system on propulsion efficiency, thrust distribution and blade load in hover and vertical take-off and landing states. The results show that the influence of the dynamic configuration of distributed ducted fan on the propulsion performance is about 3%–5%. The transverse compact distributed ducted fan can reduce the angle of attack of the incoming air flow between adjacent ductwork and reduce the propulsion efficiency, and the inner culvert is affected most obviously. The convergence of culvert fan group causes the distortion of air flow into the culvert and the flow separation at the expansion section of the culvert top, resulting in reduction of force effect. In the vertical take-off and landing stage, the near-surface jet increases the blade thrust and consumes power and decreases the ducted thrust, and the inner ducted is affected most obviously. With the increase of the distance from the ground, the effect of jet decreases gradually and the loss of force decreases.
Zhuoyuan LI , Xudong YANG , Kai SUN , Junhui XIONG , Shuai SHI . Aerodynamic configuration of distributed ducted fan with complex strong interference effect and performance influence[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(3) : 130805 -130805 . DOI: 10.7527/S1000-6893.2024.30805
1 | WELLS D. NASA green flight challenge: Conceptual design approaches and technologies to enable 200 passenger Miles per gallon: AIAA-2011-7021[R]. Reston: AIAA, 2011. |
2 | 黄俊.? 分布式电推进飞机设计技术综述[J]. 航 空 学 报, 2021, 42(3): 624037. |
HUANG J. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronauticaet Astro-nautica Sinica, 2021, 42(3): 624037 (inChinese). | |
3 | 田伟. 全电飞机发展综述[C]∥2016 IEEE中文制导导航与控制会议论文集. 南京: lEEE, 2016. |
TIAN W. Review of more-electric aircrafts[C]?∥2016 IEEE Chinese Guidance, Navigation and Control Conference. Nanjing: IEEE, 2016 (in Chinese). | |
4 | GREITZER E M, BONNEFOY P A, DELA B E, et al. N+3 aircraft concept designs and trade studies: NASA/CR-2010-216794/VOL1?[R]. Washington, D.C.: NASA, 2010. |
5 | 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报, 2022, 43(7): 25556. |
ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 25556 (in Chinese). | |
6 | 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2016, 37(1): 57-68. |
KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68 (in Chinese). | |
7 | MOORE M, FREDERICKS B. Misconceptions of electric propulsion aircraft and their emergent aviation markets:AIAA-2014-0535[R]. Reston: AIAA, 2014. |
8 | NALIANDA D, SINGH R. Turbo-electric distributed propulsion-opportunities, benefits and challenges[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6): 543-549. |
9 | 许和勇, 叶正寅. 涵道螺旋桨与孤立螺旋桨气动特性的数值模拟对比[J]. 航空动力学报, 2011, 26(12): 2820-2825. |
XU H Y, YE Z Y. Numerical simulation and comparison of aerodynamic characteristics between ducted and isolated propellers[J]. Journal of Aerospace Power, 2011, 26(12): 2820-2825 (in Chinese). | |
10 | 李晓华. 涵道风扇外形参数对气动特性的影响分析[D]. 长沙: 国防科技大学, 2014. |
LI X H. Analysis of influence of shape parameters of ducted fan on aerodynamic characteristics[D]. Changsha: National University of Defense Technology, 2014 (in Chinese). | |
11 | HUBBARD H H. Sound measurements for five shrouded propellers: NACA RM L9 J28a[R]. Washington, D. C.: NACA, 1950. |
12 | BENTO H F, DE VRIES R, VELDHUIS L L. Aerodynamic performance and interaction effects of circular and square ducted propellers: AIAA-2020-1029[R]. Reston: AIAA, 2020 |
13 | OHYA Y. Multi-rotor systems using five ducted wind turbines for power output increase (multi lens turbine): AIAA-2019-1296[R]. Reston: AIAA, 2019. |
14 | PERRY A T, ANSELL P J, KERHO M F. Aero-propulsive and propulsor cross-coupling effects on a distributed propulsion system[J]. Journal of Aircraft, 2018, 55(6): 2414-2426. |
15 | 孙蓬勃, 周洲, 郭佳豪. 不同形状涵道风扇推进特性数值分析[J]. 航空动力学报, 2022, 37(12): 2736-2748. |
SUN P B, ZHOU Z, GUO J H. Numerical analysis for propulsion characteristics of ducted fans in different shapes[J]. Journal of Aerospace Power, 2022, 37(12): 2736-2748 (in Chinese). | |
16 | 张阳, 周洲, 郭佳豪. 分布式涵道风扇喷流对后置机翼的气动性能影响[J]. 航空学报, 2021, 42(9): 224977. |
ZHANG Y, ZHOU Z, GUO J H. Effects of distributed electric propulsion jet on aerodynamic performance of rear wing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224977 (in Chinese). | |
17 | 王科雷, 周洲, 郭佳豪, 等. 分布式动力翼前飞状态动力/气动耦合特性[J]. 航空学报, 2024, 45(2): 132-150. |
WANG K L, ZHOU Z, GUO J H, et al. Propulsive/aerodynamic coupled characteristics of distributed-propulsion-wing during forward flight[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 132-150 (in Chinese). | |
18 | 张星雨, 高正红, 雷涛, 等. 分布式电推进飞机气动-推进耦合特性地面试验[J]. 航空学报, 2022, 43(8): 25389. |
ZHANG X Y, GAO Z H, LEI T, et al. Ground test on aerodynamic-propulsion coupling characteristics of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 25389 (in Chinese). | |
19 | MA Y Y, ZHANG W, ZHANG Y Z, et al. Sizing method and sensitivity analysis for distributed electric propulsion aircraft[J]. Journal of Aircraft, 2020, 57(4): 730-741. |
20 | 周芳, 王掩刚, 王思维, 等. 分布式电推进系统中涵道风扇耦合效应的试验与数值研究[J]. 推进技术, 2024, 45(3): 149-159. |
ZHOU F, WANG Y G, WANG S W, et al. Experimental and numerical study on coupling effect of ducted fan in distributed electric propulsion system[J]. Journal of Propulsion Technology, 2024, 45(3): 149-159 (in Chinese). | |
21 | 达兴亚, 范召林, 熊能, 等. 分布式边界层吸入推进系统的建模与分析[J]. 航空学报, 2018, 39(7): 108-116. |
DA X Y, FAN Z L, XIONG N, et al. Modeling and analysis of distributed boundary layer ingesting propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 108-116 (in Chinese). | |
22 | 邓阳平, 米百刚, 詹浩, 等. 涵道螺旋桨地面效应试验与数值计算研究[J]. 西北工业大学学报, 2020, 38(5): 1038-1046. |
DENG Y P, MI B G, ZHAN H, et al. Ground test and numerical simulation on ground effect of ducted propeller system[J]. Journal of Northwestern Polytechnical University, 2020, 38(5): 1038-1046 (in Chinese). |
/
〈 |
|
〉 |