special column

Review of mechanism and prediction model of boundary layer flashback in hydrogen-fueled combustor

  • Xiaoxu ZHANG ,
  • Wei XIAO ,
  • Jun CAO ,
  • Wei LI ,
  • Hua ZHOU ,
  • Zhuyin REN
Expand
  • 1.Institute for Aero Engine,Tsinghua University,Beijing 100084,China
    2.AECC Hunan Aviation Powerplant Research Institute,Zhuzhou 412002,China

Received date: 2024-07-17

  Revised date: 2024-09-02

  Accepted date: 2024-09-24

  Online published: 2024-09-29

Abstract

In the pursuit of a carbon-neutral society, hydrogen, as a zero-carbon fuel, has gained significant attention in aviation propulsion systems. Hydrogen has a higher flame propagation speed and a thinner flame thickness, which increases the risk of flashback in the design and operation of hydrogen-fueled combustor. The widely used micro-mixer nozzle effectively prevents core flow flashback by increasing axial velocity. However, the boundary layer flashback remains a challenging issue in the hydrogen-fueled combustor. This paper gives a review of the research on the boundary layer flashback of hydrogen-fueled combustor. The flame propagation characteristics and unique molecular transport properties of hydrogen are examined. Experimental and numerical simulations for non-swirling and swirling boundary layer flashback are reviewed. The flashback criteria on the laminar and turbulent boundary layer developed over recent decades are summarized. The fast flashback prediction method is introduced. Current challenges in the research on boundary layer flashback in hydrogen-fueled combustors, and the future development of boundary layer flashback criterion and modeling for premixed hydrogen flames is also discussed.

Cite this article

Xiaoxu ZHANG , Wei XIAO , Jun CAO , Wei LI , Hua ZHOU , Zhuyin REN . Review of mechanism and prediction model of boundary layer flashback in hydrogen-fueled combustor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(9) : 630952 -630952 . DOI: 10.7527/S1000-6893.2024.30952

References

1 KALANTARI A, MCDONELL V. Boundary layer flashback of non-swirling premixed flames: Mechanisms, fundamental research, and recent advances[J]. Progress in Energy and Combustion Science201761: 249-292.
2 吕海陆, 李丹, 张扬, 等. 富氢燃料气射流预混火焰回火特性的研究进展[J]. 力学学报202355(12): 2718-2731.
  LYU H L, LI D, ZHANG Y, et al. Research progress on flashback characteristics of the premixed jet flames of hydrogen-rich fuels[J]. Chinese Journal of Theoretical and Applied Mechanics202355(12): 2718-2731 (in Chinese).
3 BILLANT P, CHOMAZ J M, HUERRE P. Experimental study of vortex breakdown in swirling jets[J]. Journal of Fluid Mechanics1998376(1): 183-219.
4 LEIBOVICH S. The structure of vortex breakdown[J]. Annual Review of Fluid Mechanics197810: 221-246.
5 KONLE M, KIESEWETTER F, SATTELMAYER T. Simultaneous high repetition rate PIV-LIF-measurements of CIVB driven flashback[J]. Experiments in Fluids200844(4): 529-538.
6 ASATO K, WADA H, HIRUMA T, et al. Characteristics of flame propagation in a vortex core: Validity of a model for flame propagation[J]. Combustion and Flame1997110(4): 418-428.
7 DUWIG C, FUCHS L. Large eddy simulation of vortex breakdown/flame interaction?[J]. Physics of Fluids200719(7): 075103.
8 KONLE M, SATTELMAYER T. Interaction of heat release and vortex breakdown during flame flashback driven by combustion induced vortex breakdown[J]. Experiments in Fluids200947(4): 627-635.
9 DAM B, CORONA G, HAYDER M, et al. Effects of syngas composition on combustion induced vortex breakdown (CIVB) flashback in a swirl stabilized combustor[J]. Fuel201190(11): 3274-3284.
10 EICHLER C, SATTELMAYER T. Premixed flame flashback in wall boundary layers studied by long-distance micro-PIV[J]. Experiments in Fluids201252(2): 347-360.
11 GRUBER A, CHEN J H, VALIEV D, et al. Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow?[J]. Journal of Fluid Mechanics2012709: 516-542.
12 莫妲, 林宇震, 韩啸, 等. 氢气微混燃烧技术研究现状和未来展望[J]. 航空学报202445(7): 028994.
  MO D, LIN Y Z, HAN X, et al. Research progress and future prospect of hydrogen micromix combustion technology?[J]. Acta Aeronautica et Astronautica Sinica202445(7): 028994 (in Chinese).
13 莫妲, 刘一雄, 林宇震, 等. 氢气微混扩散燃烧技术发展[J]. 航空动力2024(2): 37-40.
  MO D, LIU Y X, LIN Y Z, et al. Development of hydrogen micro-mixing diffusion combustion technology[J]. Aerospace Power2024(2): 37-40 (in Chinese).
14 GONG X, WANG X, ZHOU H, et al. Laminar flame speed and autoignition characteristics of surrogate jet fuel blended with hydrogen[J]. Proceedings of the Combustion Institute202339(2): 1773-1781.
15 ZHANG X X, WANG X, ZHOU H, et al. Effects of Soret and differential diffusion on boundary layer flashback of H2/CH4 swirling flames[J]. Proceedings of the Combustion Institute202440(1-4): 105327.
16 DANIELE S, JANSOHN P, BOULOUCHOS K. Flashback propensity of syngas flames at high pressure: Diagnostic and control[C]?∥ASME Turbo Expo 2010: Power for Land, Sea, and Air. New York: ASME, 2010: 1169-1175.
17 BAUMGARTNER G, SATTELMAYER T. Experimental investigation on the effect of boundary layer fluid injection on the flashback propensity of premixed hydrogen-air flames[C]∥ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. New York: ASME, 2013.
18 EICHLER C, BAUMGARTNER G, SATTELMAYER T. Experimental investigation of turbulent boundary layer flashback limits for premixed hydrogen-air flames confined in ducts[J]. Journal of Engineering for Gas Turbines and Power2012134(1): 011502.
19 LEWIS B, VON ELBE G. Stability and structure of burner flames?[J]. The Journal of Chemical Physics194311(2): 75-97.
20 EDSE R. Studies on burner flames of hydrogen-oxygen mixtures at high pressures: Wright Air Development Centre Technical Report[R]. Washington, D.C.: Wright Air Developrnent Centre, 1952.
21 FINE B. Stability limits and burning velocities of laminar hydrogen-air flames at reduced pressure: NACA-TN-3833 [R]. Washington, D.C.: NACA, 1956.
22 FINE B. Further experiments on the stability of laminar and turbulent hydrogen-air flames at reduced pressures: NACA-TN-3977?[R]. Washington, D.C.: NACA, 1957.
23 FINE B. The flashback of laminar and turbulent burner flames at reduced pressure[J]. Combustion and Flame19582(3): 253-266.
24 DUAN Z X, SHAFFER B, MCDONELL V. Study of fuel composition, burner material, and tip temperature effects on flashback of enclosed jet flame[J]. Journal of Engineering for Gas Turbines and Power2013135(12): 121504.
25 DUAN Z X, SHAFFER B, MCDONELL V, et al. Influence of burner material, tip temperature, and geometrical flame configuration on flashback propensity of H2-air jet flames[J]. Journal of Engineering for Gas Turbines and Power2014136(2): 021502.
26 BAUMGARTNER G, BOECK L R, SATTELMAYER T. Experimental investigation of the transition mechanism from stable flame to flashback in a generic premixed combustion system with high-speed micro-particle image velocimetry and micro-PLIF combined with chemiluminescence imaging[J]. Journal of Engineering for Gas Turbines and Power2016138(2): 021501.
27 LEE S T, T’IEN J S. A numerical analysis of flame flashback in a premixed laminar system?[J]. Combustion and Flame198248: 273-285.
28 ENDRES A, SATTELMAYER T. Large eddy simulation of confined turbulent boundary layer flashback of premixed hydrogen-air flames?[J]. International Journal of Heat and Fluid Flow201872: 151-160.
29 ENDRES A, SATTELMAYER T. Numerical investigation of pressure influence on the confined turbulent boundary layer flashback process?[J]. Fluids20194(3): 146.
30 GRUBER A, KERSTEIN A R, VALIEV D, et al. Modeling of mean flame shape during premixed flame flashback in turbulent boundary layers[J]. Proceedings of the Combustion Institute201535(2): 1485-1492.
31 AHMED U, PILLAI A L, CHAKRABORTY N, et al. Statistical behavior of turbulent kinetic energy transport in boundary layer flashback of hydrogen-rich premixed combustion[J]. Physical Review Fluids20194(10): 103201.
32 WANG H O, WANG Z, LUO K, et al. Direct numerical simulation of turbulent boundary layer premixed combustion under auto-ignitive conditions?[J]. Combustion and Flame2021228: 292-301.
33 ZHU Z F, WANG H O, CHEN G, et al. Interactions of turbulence and flame during turbulent boundary layer premixed flame flashback under isothermal and adiabatic wall conditions using direct numerical simulation?[J]. 202335(12): 125106.
34 EBI D, CLEMENS N T. Experimental investigation of upstream flame propagation during boundary layer flashback of swirl flames[J]. Combustion and Flame2016168: 39-52.
35 EBI D, RANJAN R, CLEMENS N T. Coupling between premixed flame propagation and swirl flow during boundary layer flashback?[J]. Experiments in Fluids201859(7): 109.
36 RANJAN R, CLEMENS N T. Insights into flashback-to-flameholding transition of hydrogen-rich stratified swirl flames?[J]. Proceedings of the Combustion Institute202138(4): 6289-6297.
37 RANJAN R, EBI D F, CLEMENS N T. Role of inertial forces in flame-flow interaction during premixed swirl flame flashback[J]. Proceedings of the Combustion Institute201937(4): 5155-5162.
38 EBI D, BOMBACH R, JANSOHN P. Swirl flame boundary layer flashback at elevated pressure: Modes of propagation and effect of hydrogen addition[J]. Proceedings of the Combustion Institute202138(4): 6345-6353.
39 LIETZ C, RAMAN V. Large eddy simulation of flame flashback in swirling premixed CH4/H2-air flames[C]?∥53rd AIAA aerospace sciences meeting. Reston: AIAA, 2015.
40 XIA H, HAN W, WEI X T, et al. Numerical investigation of boundary layer flashback of CH4/H2/air swirl flames under different thermal boundary conditions in a bluff‐body swirl burner[J]. Proceedings of the Combustion Institute202339(4): 4541-4551.
41 NOVOSELOV A G, EBI D, NOIRAY N. Confined boundary-layer flashback flame dynamics in a turbulent swirling flow?[J]. AIAA Journal202361(4): 1548-1554.
42 ZHANG S M, LU Z, YANG Y. Modeling the boundary-layer flashback of premixed hydrogen-enriched swirling flames at high pressures?[J]. Combustion and Flame2023255: 112900.
43 LEWIS B, VON ELBE G. Combustion, flames and explosions of gases [M].3rd ed. Deron: Academic Press,1987:216-413.
44 HARRIS M E, GRUMER J, VON ELBE G, et al. Burning velocities, quenching, and stability data on nonturbulent flames of methane and propane with oxygen and nitrogen application of theory of ignition, quenching, and stabilizationto flames of propane and air[J]. Symposium on Combustion and Flame, and Explosion Phenomena19483(1): 80-89.
45 WOHL K. Quenching, flash-back, blow-off-theory and experiment[J]. Symposium (International) on Combustion19534(1): 68-89.
46 BERLAD A L, POTTER A E. Relation of boundary velocity gradient for flash-back to burning velocity and quenching distance[J]. Combustion and Flame19571(1): 127-128.
47 KHITRIN L N, MOIN P B, SMIRNOV D B, et al. Peculiarities of laminar- and turbulent-flame flashbacks[J]. Symposium (International) on Combustion196510(1): 1285-1291.
48 PUTNAM A A, JENSEN R A. Application of dimensionless numbers to flash-back and other combustion phenomena[J]. Symposium on Combustion and Flame, and Explosion Phenomena19483(1): 89-98.
49 STRAKEY P, SIDWELL T, ONTKO J. Investigation of the effects of hydrogen addition on lean extinction in a swirl stabilized combustor?[J]. Proceedings of the Combustion Institute200731(2): 3173-3180.
50 LIN Y-C, DANIELE S, JANSOHN P, et al. Turbulent flame speed as an indicator for flashback propensity of hydrogen-rich fuel gases?[J]. Journal of Engineering for Gas Turbines and Power2013135(11): 111503.
51 KALANTARI A, SULLIVAN-LEWIS E, MCDONELL V. Flashback propensity of turbulent hydrogen-air jet flames at gas turbine premixer conditions[J]. Journal of Engineering for Gas Turbines and Power2016138(6): 061506.
52 HOFERICHTER V, HIRSCH C, SATTELMAYER T. Prediction of confined flame flashback limits using boundary layer separation theory[J]. Journal of Engineering for Gas Turbines and Power2017139(2): 021505.
53 HOFERICHTER V, HIRSCH C, SATTELMAYER T. Analytic prediction of unconfined boundary layer flashback limits in premixed hydrogen-air flames[J]. Combustion Theory and Modelling201721(3): 382-418.
54 NOVOSELOV A G, EBI D, NOIRAY N. Accurate prediction of confined turbulent boundary layer flashback through a critically strained flame model[C]?∥ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. New York: ASME, 2022.
55 BOUVET N, HALTER F, CHAUVEAU C, et al. On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures[J]. International Journal of Hydrogen Energy201338(14): 5949-5960.
56 BELL J B, CHENG R K, DAY M S, et al. Numerical simulation of Lewis number effects on lean premixed turbulent flames[J]. Proceedings of the Combustion Institute200731(1): 1309-1317.
57 DUAN Z X, KALANTARI A, MCDONELL V. Parametric analysis of flashback propensity with various fuel compositions and burner materials?[C]?∥ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: ASME, 2015.
58 STRATFORD B S. The prediction of separation of the turbulent boundary layer[J]. Journal of Fluid Mechanics19595: 1-16.
59 BECHTOLD J K, MATALON M. The dependence of the Markstein length on stoichiometry[J]. Combustion and Flame2001127(1-2): 1906-1913.
Outlines

/