ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Influence of space environment on mechanical properties and structure of high-performance fibres
Received date: 2024-07-26
Revised date: 2024-08-26
Accepted date: 2024-09-23
Online published: 2024-09-26
Supported by
The Fundamental Research Funds for the Central Universities(2232023G-06);Shanghai Academy of Spaceflight Technology Industry-University Research Cooperation Fund(SAST2022-026)
The drag ball de-orbiting method is an effective solution to the problem of space debris in Low-Earth Orbit (LEO). Utilizing a high-performance fiber integrated weaving process to produce drag ball de-orbiting structures can effectively improve the curved surface irregularities of the spliced structure. During the de-orbiting cycle, the high-performance fiber material will be exposed to environmental factors such as high/low temperature alternating and Atomic Oxygen (AO) irradiation in LEO for extended periods. To investigate the effects of these two major space environment factors, high/low temperature alternating and atomic oxygen irradiation, on the structure and performance of high-performance fibers in the LEO environment, fibers with good adaptability to the space environment were selected for weaving. The mechanical properties, surface morphology, and chemical properties of three types of organic high-performance fibers, namely polyimide fiber, polyarylate fiber Vectran, and polyarylate fiber Yokolar, were tested and analyzed after undergoing high/low temperature alternating treatment and atomic oxygen irradiation treatment.The results showed that the strength of all three types of fibers decreased after the high/low temperature alternating treatment, but the strength retention rate remained higher than 70%. Minor defects such as particles and grooves were observed on the surface of the fibers; however, there was no significant change in the characteristic peaks of infrared spectra, indicating that the chemical structure was largely stable. In contrast, the mechanical properties of all the three types of fibers experienced more than 40% loss after atomic oxygen irradiation, leading to increased hardness and reduced flexibility. The polyimide fiber surface exhibited numerous concave and convex undulations, uneven thickness, and noticeable erosion holes. The surfaces of the two types of polyaramid fibers showed original fibrillated cleavage and stripping. New characteristic peaks appeared in the fiber infrared spectroscopy after treatment, and some original peaks weakened or disappeared, indicating that the chemical structures of all three types of fibers were damaged. While the three types of high-performance fibers exhibited good resistance to high/low temperature alternating, atomic oxygen irradiation caused severe damage to their structure and performance. Thus, further investigation is needed to explore treatment methods for protecting high-performance fibers from atomic oxygen.
Shiqi PEI , Jinhua JIANG , Nanliang CHEN , Kai WANG . Influence of space environment on mechanical properties and structure of high-performance fibres[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(1) : 630997 -630997 . DOI: 10.7527/S1000-6893.2024.30997
1 | 湛永钟,张国定. 低地球轨道环境对材料的影响[J]. 宇航材料工艺, 2003, 1(1): 1-5, 23. |
ZHAN Y Z, ZHANG G D. Low Earth orbit environmental effects on materials[J]. Aerospace Materials & Technology, 2003, 1(1): 1-5, 23 (in Chinese). | |
2 | 曹生珠, 王虎, 张凯锋, 等. 柔性气阻球帆主动离轨装置及其在轨飞行验证[J]. 空间碎片研究, 2021, 21(3): 29-33. |
CAO S Z, WANG H, ZHANG K F, et al. Active de-orbit device of membrane spherical sail and its flight verification[J]. Space Debris Research, 2021, 21(3): 29-33 (in Chinese). | |
3 | 彭福军, 恽卫东, 耿海峰. 空间增阻薄膜结构研究进展及关键技术[J]. 机械工程学报, 2020, 56(13): 156-164. |
PENG F J, YUN W D, GENG H F. Advancement and key technologies of deployable membrane structure for space debris removal[J]. Journal of Mechanical Engineering, 2020, 56(13): 156-164 (in Chinese). | |
4 | LEDKOV A, ASLANOV V. Review of contact and contactless active space debris removal approaches[J]. Progress in Aerospace Sciences, 2022, 134: 100858. |
5 | NOCK K, GATES K, AARON K, et al. Gossamer Orbit Lowering Device (GOLD) for safe and efficient de-orbit[C]∥ Proceedings of the AIAA/AAS Astrodynamics Specialist Conference. Reston: AIAA, 2010. |
6 | 卫剑征, 张义, 侯一心, 等. 全向增阻离轨的充气薄膜球设计与性能分析[J]. 清华大学学报(自然科学版), 2023, 63(3): 302-310. |
WEI J Z, ZHANG Y, HOU Y X, et al. Design and performance analysis of an inflatable film balloon for drag deorbiting[J]. Journal of Tsinghua University (Science and Technology), 2023, 63(3): 302-310 (in Chinese). | |
7 | 李华南, 封伟, 王挺. 聚酰亚胺合成及应用进展[J]. 吉林建筑大学学报, 2017, 34(2): 102-106. |
LI H N, FENG W, WANG T. Research progress in synthesis and application of quantum dots[J]. Journal of Jilin Jianzhu University, 2017, 34(2): 102-106 (in Chinese). | |
8 | 刘向阳, 顾宜. 高性能聚酰亚胺纤维[J]. 化工新型材料, 2005, 33(5): 14-17. |
LIU X Y, GU Y. High performance polyimide fibres[J]. New Chemical Materials, 2005, 33(5): 14-17 (in Chinese). | |
9 | ZHANG M Y, NIU H Q, WU D Z. Polyimide fibers with high strength and high modulus: Preparation, structures, properties, and applications[J]. Macromolecular Rapid Communications, 2018, 39(20): e1800141. |
10 | 王雪冰. 聚芳酯纤维/双马树脂复合材料的制备与性能研究[D]. 上海: 东华大学, 2022: 1-2. |
WANG X B. Study on preparation and properties of polyarylate fiber/bismaleimide resin composites[D]. Shanghai: Donghua University, 2022: 1-2 (in Chinese). | |
11 | 崔智瑶, 王林山, 钱余海, 等. 低地轨道空间中原子氧对聚酰亚胺的侵蚀及其防护措施[J]. 腐蚀与防护, 2021, 42(11): 12-19. |
CUI Z Y, WANG L S, QIAN Y H, et al. Atomic oxygen erosion-corrosion to polyimide in low earth orbit and its protective measures[J]. Corrosion & Protection, 2021, 42(11): 12-19 (in Chinese). | |
12 | 饶晨禹. 多层夹芯蒙皮充气囊体折叠展开特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2022: 1. |
RAO C Y. Analysis of folding and unfolding characteristics of multi-layer sandwich skin airbag[D]. Harbin: Harbin Institute of Technology, 2022: 1 (in Chinese). | |
13 | 房光强, 沈登雄, 栗付平, 等. 聚酰亚胺/SiO2纳米复合抗原子氧气凝胶的合成与性能[J]. 材料工程, 2015, 43(12): 17-23. |
FANG G Q, SHEN D X, LI F P, et al. Synthesis and properties of atomic-oxygen resistant polyimide-SiO2 nanocomposite aerogels[J]. Journal of Materials Engineering, 2015, 43(12): 17-23 (in Chinese). | |
14 | 焦子龙, 姜利祥, 刘宇明, 等. 原子氧作用下聚合物薄膜材料表面形貌变化研究综述[J]. 装备环境工程, 2023, 20(11): 29-37. |
JIAO Z L, JIANG L X, LIU Y M, et al. Review of morphological changes of polymeric materials under atomic oxygen exposure[J]. Equipment Environmental Engineering, 2023, 20(11): 29-37 (in Chinese). | |
15 | 赵小虎, 沈志刚, 王忠涛, 等. 空间Kapton材料的原子氧、 温度、 紫外效应试验研究[J]. 北京航空航天大学学报,2001, 27(6): 670-673. |
ZHAO X H, SHEN Z G, WANG Z T, et al. Experimental investigations of atomic oxygen, temperature, ultra-violet radiation effects on a spacecraft material-Kapton[J]. Journal of Beijing University of Aeronautics and Astronautics, 2001, 27(6): 670-673 (in Chinese). | |
16 | DUO S W, LI M, ZHOU Y, et al. Investigation of surface reaction and degradation mechanism of Kapton during atomic oxygen exposure[J]. Journal of Materials Science and Technology, 2003, 19(6): 535-539. |
17 | 周加涛. 含氮杂环聚酰亚胺纤维表面改性及其复合材料性能研究[D]. 合肥: 中国科学技术大学, 2019: 80-83. |
ZHOU J T. Study on surface modification of nitrogen-containing heterocyclic polyimide fiber and properties of its composites[D]. Hefei: University of Science and Technology of China, 2019: 80-83 (in Chinese). | |
18 | 佟培艺. 微小碎片与原子氧协同作用下Kapton薄膜损伤效应研究[D]. 天津: 河北工业大学, 2022: 19-20, 37. |
TONG P Y. Study on damage effect of Kapton thin films under the synergistic effect of tinyfragments and atomic oxygen[D]. Tianjin: Hebei University of Technology, 2022: 19-20, 37 (in Chinese). | |
19 | 蒋东华. Kapton薄膜原子氧效应与防护研究[D]. 天津: 天津大学, 2019: 22-23. |
JIANG D H. Study on atomic oxygen effect and protection of Kapton thin films[D].Tianjin: Tianjin University, 2019: 22-23 (in Chinese). | |
20 | 王彦明, 高晓红, 李萍, 等. 原子氧辐照对含苯并咪唑结构聚酰亚胺摩擦学性能影响研究[J]. 材料导报, 2023, 37(4): 216-222. |
WANG Y M, GAO X H, LI P, et al. Effect of atomic oxygen irradiation on tribological performance of a polyimide containing benzimidazole groups[J]. Materials Report, 2023, 37(4): 216-222 (in Chinese). | |
21 | 林婷婷, 邵慧奇, 蒋金华, 等. 高温对几种有机高性能纤维力学性能及结构的影响[J]. 复合材料科学与工程, 2021(8): 44-49, 84. |
LIN T T, SHAO H Q, JIANG J H, et al. The effect of high temperature on the tensile properties and structure of several organic high-performance fibers[J]. Composites Science and Engineering, 2021(8): 44-49, 84 (in Chinese). | |
22 | LI M, YANG D H, SHANG K. Effects of cryogenic environment on mechanical properties of high-performance organic fibers[J]. Space Medicine & Medical Engineering, 2017, 30(2): 79-83. |
23 | 赵小虎, 沈志刚, 邢玉山, 等. 地面模拟设备中原子氧通量测量方法的比较研究[J]. 航空学报, 2008, 29(2): 478-486. |
ZHAO X H, SHEN Z G, XING Y S, et al. Comparative study of measurement methods of atomic oxygen flux in ground-based simulation facility[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 478-486 (in Chinese). | |
24 | 梁晓凡, 张新兰, 邹士文. 近地轨道空间中硅橡胶类材料的环境适应性及老化[J]. 高分子通报, 2018(5): 79-83. |
LIANG X F, ZHANG X L, ZOU S W. Environmental adaptability and aging of silicone rubber materials in Low Earth Orbit[J]. Polymer Bulletin, 2018(5): 79-83 (in Chinese). | |
25 | 丁孟贤. 聚酰亚胺: 化学、结构与性能的关系及材料[M]. 2版. 北京: 科学出版社, 2012. |
DING M X. Polyimide: Relationship between chemistry, structure and properties and materials[M]. 2nd ed.Beijing: Science Press, 2012 (in Chinese). | |
26 | 任文娥, 于钦学, 钟力生, 等. Kapton CR防电晕薄膜热老化特性的研究[J]. 绝缘材料, 2012, 45(4): 42-44. |
REN W E, YU Q X, ZHONG L S, et al. Study on thermal aging characteristics of Kapton CR corona-proof film[J]. Insulating Materials, 2012, 45(4): 42-44 (in Chinese). | |
27 | 陈宇锋, 王旭东, 黄铄涵, 等. 含萘环热致液晶聚芳酯的合成及热处理[J]. 纺织高校基础科学学报, 2023, 36(6): 30-37. |
CHEN Y F, WANG X D, HUANG S H, et al. Synthesis and thermal treatment of liquid crystal polyarylates containing naphthalene rings[J]. Basic Sciences Journal of Textile Universities, 2023, 36(6): 30-37 (in Chinese). | |
28 | ZHAO W, LI W P, LIU H C, et al. Erosion of a polyimide material exposed to simulated atomic oxygen environment[J]. Chinese Journal of Aeronautics, 2010, 23(2): 268-273. |
29 | 李烨. 高性能纤维弱节表征方法的研究[D]. 上海: 东华大学, 2004: 1-6. |
LI Y. Study on characterization method of weak nodes in high performance fibers[D]. Shanghai: Donghua University,2004: 1-6 (in Chinese). | |
30 | 于伟东. 高模量涤纶纤维的结构弱节特征及力学行为[J]. 高分子材料科学与工程, 2005, 21(5): 141-144. |
YU W D. Structural characteristics and tensile behaviour of the weak-links of high modulus pet fibres[J]. Polymer Materials Science & Engineering, 2005, 21(5): 141-144 (in Chinese). | |
31 | 周远翔, 莫雅俊, 刘慧芳, 等. 加速热老化下聚酰亚胺材料力学性能和寿命模型研究[J]. 绝缘材料, 2017, 50(7): 31-35. |
ZHOU Y X, MO Y J, LIU H F, et al. Mechanical properties and life model of polyimide materials under accelerated thermal ageing[J]. Insulating Materials, 2017, 50(7): 31-35 (in Chinese). | |
32 | NIU H Q, HUANG M J, QI S L, et al. High-performance copolyimide fibers containing quinazolinone moiety: Preparation, structure and properties[J]. Polymer, 2013, 54(6): 1700-1708. |
33 | 金盈, 曾广赋, 朱丹阳, 等. 聚酰胺酸结构及其亚胺化的红外光谱分析[J]. 应用化学, 2011, 28(3): 258-262. |
JIN Y, ZENG G F, ZHU D Y, et al. Analysis of structure and imidization of poly(amic acid) using FTIR spectroscopy[J]. Chinese Journal of Applied Chemistry, 2011, 28(3): 258-262 (in Chinese). | |
34 | 王春艳. 热处理及紫外老化对PIPD纤维结构及性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2015: 26-27. |
WANG C Y. Effect of heat treatment and ultraviolet aging on structure and properties of PIPD fiber[D]. Harbin: Harbin Institute of Technology, 2015: 26-27 (in Chinese). | |
35 | 滕可心. 原子氧侵蚀航天材料Kapton的机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 41-50. |
TENG K X. Study on the mechanism of atomic oxygenerosion of aerospace material Kapton?[D]. Harbin: Harbin Institute of Technology, 2019: 41-50 (in Chinese). |
/
〈 |
|
〉 |