Electronics and Electrical Engineering and Control

Active disturbance rejection control for load relief of launch vehicles considering elastic effects

  • Zibo LIU ,
  • Ran ZHANG ,
  • Wenchao XUE ,
  • Huifeng LI
Expand
  • 1.School of Astronautics,Beihang University,Beijing 100191,China
    2.Key Laboratory of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China

Received date: 2024-02-28

  Revised date: 2024-05-08

  Accepted date: 2024-09-18

  Online published: 2024-09-26

Supported by

National Natural Science Foundation of China(92471204)

Abstract

The load relief control of launch vehicles reduces aerodynamic loads by decreasing the angle of attack. However, existing Active Disturbance Rejection Control (ADRC) methods for load relief do not fully consider elastic effects, which may lead to reduced disturbance estimation accuracy and even compromise system stability. To address this, this paper analyzes the impact of elastic vibration on disturbance estimation and observer gain, and proposes an improvement to suppress elastic vibration. By isolating elastic motion from rigid-body motion, the measured input of the Extended State Observer (ESO) is made to match the observation model, thereby reducing the influence of elasticity on disturbance estimation. Based on this, an open-loop transfer function of the ADRC system for load relief is derived considering elastic vibration, and a set of parameter tuning rules is provided. By properly configuring the bandwidths of the load relief feedback control and the ESO, the tuning process is simplified, while ensuring sufficient stability margins. Simulation and experimental results demonstrate that this method proposed can enhance system stability, while achieving effective disturbance suppression and load relief. Feasibility of the algorithm is validated through hardware-in-the-loop simulations and flight tests on a rocket.

Cite this article

Zibo LIU , Ran ZHANG , Wenchao XUE , Huifeng LI . Active disturbance rejection control for load relief of launch vehicles considering elastic effects[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(1) : 330319 -330319 . DOI: 10.7527/S1000-6893.2024.30319

References

1 HOELKER R F. Theory of artificial stabilization of missiles and space vehicles with exposition of four control principles: NASA-TN-D-555[R]. Washington, D.C.: NASA; 1961.
2 宋征宇. 运载火箭飞行减载控制技术[J]. 航天控制201331(5): 3-7, 18.
  SONG Z Y. Load control technology in launch vehicle[J]. Aerospace Control201331(5): 3-7, 18 (in Chinese).
3 HARRIS R. Atlas-Centaur AC-5 analog/digital load reduction autopilot study: GD/A-BTD-64-058[R]. Washington, D.C.: NASA; 1964.
4 LIVINGSTON J, REDUS J. Load-reducing flight control systems for the Saturn V with various payloads: AIAA-1968-0843[R]. Reston: AIAA, 1968.
5 HAEUSSERMANN W. Guidance and control of Saturn launch vehicles: AIAA-1965-0304[R]. Reston: AIAA, 1965.
6 HAEUSSERMANN W. Saturn launch vehicle’s navigation guidance, and control system[J]. Automatica19717(5): 537-556.
7 SHARP J. Attitude control systems for load relief of saturn-class launch vehicles: NASA-CR-61375 [R]. Washington, D.C.: NASA; 1971.
8 SUZUKI H. Load relief control of H-IIA launch vehicle[J]. IFAC Proceedings Volumes200437(6): 985-990.
9 SAUNOIS P. Comparative analysis of architectures for the control loop of launch vehicles during atmospheric flight[J]. Aerospace Science and Technology200813(2): 150-156.
10 宋征宇,潘豪,王聪,等. 长征运载火箭飞行控制技术的发展[J]. 宇航学报202041(7): 868-879.
  SONG Z Y, PAN H, WANG C, et al. Development of flight control technology of long march launch vehicles[J]. Journal of Astronautics202041(7): 868-879 (in Chinese).
11 MCCOOL A A, VERBLE JR A J, POTTER J H. Space transportation system solid rocket booster thrust vector control system[J]. Journal of Spacecraft and Rockets198017(5): 407-412.
12 SCHLEICH W T. Shuttle vehicle configuration impact on ascent guidance and control[J]. Journal of Guidance, Control, and Dynamics19847(3): 338-346.
13 OLSON L M, SUNKEL J W. Postflight evaluation of the Shuttle guidance, navigation, and control during powered-ascent flight phase[J]. Journal of Guidance, Control, and Dynamics19836(6): 418-423.
14 MCDERMOTT A, MAKOWSKI K. Space Shuttle linearized guidance, navigation, and control stabilityanalysis: AIAA-1982-1555[R]. Reston: AIAA, 1982.
15 HALL C, LEE C, JACKSON M, et al. Ares I flight control system overview: AIAA-2008-6287[R]. Reston, VA: AIAA, 2008..
16 JANG J W, ALANIZ A, HALL R, et al. Ares I flight control system design: AIAA-2010-8442[R]. Reston: AIAA, 2010.
17 ORR J S, WALL J H, VANZWIETEN T S, et al. Space launch system ascent flight control design:M14-3168[R]. San Francisco: AAS, 2014.
18 DENNEHY C J, VANZWIETEN T S, HANSON C E, et al. Flight testing of the space launch system (SLS) adaptive augmenting control (AAC) algorithm on an F/A-18: NESC-RP-13-00847[R]. Washington, D.C.: NASA; 2014.
19 WALL J H, ORR J S, VANZWIETEN T S. Space launch system implementation of adaptive augmenting control: AAS14-051[R]. San Francisco: AAS, 2014.
20 宋征宇, 刘立东, 陈晓飞, 等. 新一代中型系列运载火箭长征八号的发展及其关键技术[J]. 宇航学报202344(4): 476-485.
  SONG Z Y, LIU L D, CHEN X F, et al. Development and key technologies of long March 8 family: China’s next-generation medium-lift launchers[J]. Journal of Astronautics202344(4): 476-485 (in Chinese).
21 赵永志, 王紫扬, 宋征宇, 等. 运载火箭加速度计反馈主动减载实施效果评价[J]. 宇航学报202243(4): 393-402.
  ZHAO Y Z, WANG Z Y, SONG Z Y, et al. Assessment on accelerometer based load relief control for launch vehicle[J]. Journal of Astronautics202243(4): 393-402 (in Chinese).
22 SONG Z Y, PAN H, XU S S, et al. Comprehensive load relief of launch vehicle with the constraints of legacy stages[J]. AIAA Journal202260(8): 4991-5003.
23 ZHANG X Y, XUE W C, LIU Z B, et al. Compensated acceleration feedback based active disturbance rejection control for launch vehicles[J]. Chinese Journal of Aeronautics202437(4): 464-478.
24 SIMPLíCIO P, MARCOS A, BENNANI S. New control functionalities for launcher load relief in ascent and descent flight[C]?∥Proceedings of the 8th European Conference for Aeronautics and Aerospace Sciences. Paris: ESA, 2019.
25 YANG W Q, TANG S, XU Z. Control enhanced and parameterized load relief technology for a launch vehicle: AIAA-2015-2655[R]. Reston: AIAA, 2015.
26 张亮, 李丹钰, 崔乃刚, 等. 垂直起降可重复使用运载火箭全剖面飞行预设性能控制[J]. 航空学报202344(23): 628103.
  ZHANG L, LI D Y, CUI N G, et al. Full flight profile prescribed performance control for vertical take-off and vertical landing reusable launch vehicle[J]. Acta Aeronautica et Astronautica Sinica202344(23): 628103 (in Chinese).
27 赵旭, 齐国元, 蔚昕晨, 等. 补偿函数观测器及其在飞行器姿态控制中的应用[J]. 航空学报202344(9): 327224.
  ZHAO X, QI G Y, ( WEI/YU) X C, et al. Compensation function observer and its application in flight vehicle attitude control[J]. Acta Aeronautica et Astronautica Sinica202344(9): 327224 (in Chinese).
28 NAVARRO-TAPIA D, MARCOS A, SIMPLíCIO P, et al. Legacy recovery and robust augmentation structured design for the VEGA launcher[J]. International Journal of Robust and Nonlinear Control201929(11): 3363-3388.
29 朴敏楠,陈志刚,孙明玮,等. 高超声速飞行器气动伺服弹性的自适应抑制[J]. 航空学报202041(11): 623698.
  PIAO M N, CHEN Z G, SUN M W, et al. Adaptive aeroservo elasticity suppression of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica202041(11): 623698 (in Chinese).
30 徐延万. 控制系统[M]北京:宇航出版社, 1989: 113-149.
  XU Y W. Control system[M]. Beijing: China Aerospace Publishing House. 1989: 113-149 (in Chinese).
31 GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]?∥Proceedings of the 2003 American Control Conference. Piscataway: IEEE Press, 2003: 4989-4996.
32 XUE W C, HUANG Y. Performance analysis of 2-DOF tracking control for a class of nonlinear uncertain systems with discontinuous disturbances[J]. International Journal of Robust and Nonlinear Control201828(4): 1456-1473.
33 ZHONG S, HUANG Y, CHEN S, et al. A novel ADRC-based design for a kind of flexible aerocraft[J]. Control Theory and Technology202119(1): 35-48.
34 ZHANG X Y, XUE W C, ZHAO Y L. On observability analysis and observer design for a class of nonlinear uncertain systems with general elastic vibration dynamics[J]. Asian Journal of Control202224(4): 2013-2024.
Outlines

/