ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Active disturbance rejection control for load relief of launch vehicles considering elastic effects
Received date: 2024-02-28
Revised date: 2024-05-08
Accepted date: 2024-09-18
Online published: 2024-09-26
Supported by
National Natural Science Foundation of China(92471204)
The load relief control of launch vehicles reduces aerodynamic loads by decreasing the angle of attack. However, existing Active Disturbance Rejection Control (ADRC) methods for load relief do not fully consider elastic effects, which may lead to reduced disturbance estimation accuracy and even compromise system stability. To address this, this paper analyzes the impact of elastic vibration on disturbance estimation and observer gain, and proposes an improvement to suppress elastic vibration. By isolating elastic motion from rigid-body motion, the measured input of the Extended State Observer (ESO) is made to match the observation model, thereby reducing the influence of elasticity on disturbance estimation. Based on this, an open-loop transfer function of the ADRC system for load relief is derived considering elastic vibration, and a set of parameter tuning rules is provided. By properly configuring the bandwidths of the load relief feedback control and the ESO, the tuning process is simplified, while ensuring sufficient stability margins. Simulation and experimental results demonstrate that this method proposed can enhance system stability, while achieving effective disturbance suppression and load relief. Feasibility of the algorithm is validated through hardware-in-the-loop simulations and flight tests on a rocket.
Zibo LIU , Ran ZHANG , Wenchao XUE , Huifeng LI . Active disturbance rejection control for load relief of launch vehicles considering elastic effects[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(1) : 330319 -330319 . DOI: 10.7527/S1000-6893.2024.30319
1 | HOELKER R F. Theory of artificial stabilization of missiles and space vehicles with exposition of four control principles: NASA-TN-D-555[R]. Washington, D.C.: NASA; 1961. |
2 | 宋征宇. 运载火箭飞行减载控制技术[J]. 航天控制, 2013, 31(5): 3-7, 18. |
SONG Z Y. Load control technology in launch vehicle[J]. Aerospace Control, 2013, 31(5): 3-7, 18 (in Chinese). | |
3 | HARRIS R. Atlas-Centaur AC-5 analog/digital load reduction autopilot study: GD/A-BTD-64-058[R]. Washington, D.C.: NASA; 1964. |
4 | LIVINGSTON J, REDUS J. Load-reducing flight control systems for the Saturn V with various payloads: AIAA-1968-0843[R]. Reston: AIAA, 1968. |
5 | HAEUSSERMANN W. Guidance and control of Saturn launch vehicles: AIAA-1965-0304[R]. Reston: AIAA, 1965. |
6 | HAEUSSERMANN W. Saturn launch vehicle’s navigation guidance, and control system[J]. Automatica, 1971, 7(5): 537-556. |
7 | SHARP J. Attitude control systems for load relief of saturn-class launch vehicles: NASA-CR-61375 [R]. Washington, D.C.: NASA; 1971. |
8 | SUZUKI H. Load relief control of H-IIA launch vehicle[J]. IFAC Proceedings Volumes, 2004, 37(6): 985-990. |
9 | SAUNOIS P. Comparative analysis of architectures for the control loop of launch vehicles during atmospheric flight[J]. Aerospace Science and Technology, 2008, 13(2): 150-156. |
10 | 宋征宇,潘豪,王聪,等. 长征运载火箭飞行控制技术的发展[J]. 宇航学报, 2020, 41(7): 868-879. |
SONG Z Y, PAN H, WANG C, et al. Development of flight control technology of long march launch vehicles[J]. Journal of Astronautics, 2020, 41(7): 868-879 (in Chinese). | |
11 | MCCOOL A A, VERBLE JR A J, POTTER J H. Space transportation system solid rocket booster thrust vector control system[J]. Journal of Spacecraft and Rockets, 1980, 17(5): 407-412. |
12 | SCHLEICH W T. Shuttle vehicle configuration impact on ascent guidance and control[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(3): 338-346. |
13 | OLSON L M, SUNKEL J W. Postflight evaluation of the Shuttle guidance, navigation, and control during powered-ascent flight phase[J]. Journal of Guidance, Control, and Dynamics, 1983, 6(6): 418-423. |
14 | MCDERMOTT A, MAKOWSKI K. Space Shuttle linearized guidance, navigation, and control stabilityanalysis: AIAA-1982-1555[R]. Reston: AIAA, 1982. |
15 | HALL C, LEE C, JACKSON M, et al. Ares I flight control system overview: AIAA-2008-6287[R]. Reston, VA: AIAA, 2008.. |
16 | JANG J W, ALANIZ A, HALL R, et al. Ares I flight control system design: AIAA-2010-8442[R]. Reston: AIAA, 2010. |
17 | ORR J S, WALL J H, VANZWIETEN T S, et al. Space launch system ascent flight control design:M14-3168[R]. San Francisco: AAS, 2014. |
18 | DENNEHY C J, VANZWIETEN T S, HANSON C E, et al. Flight testing of the space launch system (SLS) adaptive augmenting control (AAC) algorithm on an F/A-18: NESC-RP-13-00847[R]. Washington, D.C.: NASA; 2014. |
19 | WALL J H, ORR J S, VANZWIETEN T S. Space launch system implementation of adaptive augmenting control: AAS14-051[R]. San Francisco: AAS, 2014. |
20 | 宋征宇, 刘立东, 陈晓飞, 等. 新一代中型系列运载火箭长征八号的发展及其关键技术[J]. 宇航学报, 2023, 44(4): 476-485. |
SONG Z Y, LIU L D, CHEN X F, et al. Development and key technologies of long March 8 family: China’s next-generation medium-lift launchers[J]. Journal of Astronautics, 2023, 44(4): 476-485 (in Chinese). | |
21 | 赵永志, 王紫扬, 宋征宇, 等. 运载火箭加速度计反馈主动减载实施效果评价[J]. 宇航学报, 2022, 43(4): 393-402. |
ZHAO Y Z, WANG Z Y, SONG Z Y, et al. Assessment on accelerometer based load relief control for launch vehicle[J]. Journal of Astronautics, 2022, 43(4): 393-402 (in Chinese). | |
22 | SONG Z Y, PAN H, XU S S, et al. Comprehensive load relief of launch vehicle with the constraints of legacy stages[J]. AIAA Journal, 2022, 60(8): 4991-5003. |
23 | ZHANG X Y, XUE W C, LIU Z B, et al. Compensated acceleration feedback based active disturbance rejection control for launch vehicles[J]. Chinese Journal of Aeronautics, 2024, 37(4): 464-478. |
24 | SIMPLíCIO P, MARCOS A, BENNANI S. New control functionalities for launcher load relief in ascent and descent flight[C]?∥Proceedings of the 8th European Conference for Aeronautics and Aerospace Sciences. Paris: ESA, 2019. |
25 | YANG W Q, TANG S, XU Z. Control enhanced and parameterized load relief technology for a launch vehicle: AIAA-2015-2655[R]. Reston: AIAA, 2015. |
26 | 张亮, 李丹钰, 崔乃刚, 等. 垂直起降可重复使用运载火箭全剖面飞行预设性能控制[J]. 航空学报, 2023, 44(23): 628103. |
ZHANG L, LI D Y, CUI N G, et al. Full flight profile prescribed performance control for vertical take-off and vertical landing reusable launch vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628103 (in Chinese). | |
27 | 赵旭, 齐国元, 蔚昕晨, 等. 补偿函数观测器及其在飞行器姿态控制中的应用[J]. 航空学报, 2023, 44(9): 327224. |
ZHAO X, QI G Y, ( WEI/YU) X C, et al. Compensation function observer and its application in flight vehicle attitude control[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(9): 327224 (in Chinese). | |
28 | NAVARRO-TAPIA D, MARCOS A, SIMPLíCIO P, et al. Legacy recovery and robust augmentation structured design for the VEGA launcher[J]. International Journal of Robust and Nonlinear Control, 2019, 29(11): 3363-3388. |
29 | 朴敏楠,陈志刚,孙明玮,等. 高超声速飞行器气动伺服弹性的自适应抑制[J]. 航空学报, 2020, 41(11): 623698. |
PIAO M N, CHEN Z G, SUN M W, et al. Adaptive aeroservo elasticity suppression of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 623698 (in Chinese). | |
30 | 徐延万. 控制系统[M]北京:宇航出版社, 1989: 113-149. |
XU Y W. Control system[M]. Beijing: China Aerospace Publishing House. 1989: 113-149 (in Chinese). | |
31 | GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]?∥Proceedings of the 2003 American Control Conference. Piscataway: IEEE Press, 2003: 4989-4996. |
32 | XUE W C, HUANG Y. Performance analysis of 2-DOF tracking control for a class of nonlinear uncertain systems with discontinuous disturbances[J]. International Journal of Robust and Nonlinear Control, 2018, 28(4): 1456-1473. |
33 | ZHONG S, HUANG Y, CHEN S, et al. A novel ADRC-based design for a kind of flexible aerocraft[J]. Control Theory and Technology, 2021, 19(1): 35-48. |
34 | ZHANG X Y, XUE W C, ZHAO Y L. On observability analysis and observer design for a class of nonlinear uncertain systems with general elastic vibration dynamics[J]. Asian Journal of Control, 2022, 24(4): 2013-2024. |
/
〈 |
|
〉 |