ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Fast analysis of aerodynamic interference for quad-tiltrotor based on vortex tube model
Received date: 2024-05-20
Revised date: 2024-06-21
Accepted date: 2024-09-19
Online published: 2024-09-23
Supported by
National Natural Science Foundation of China(11902052);Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX1592);Open Project of the Key Laboratory of Rotor Aerodynamics, China Aerodynamics Research and Development Center(RAL202302-3)
In order to address the challenge of accurately and rapidly evaluating the aerodynamic interference between rotors in the overall design and flight dynamics modeling of quad-tiltrotor aircraft, a fast analysis method for multirotor aerodynamic interference based on the vortex tube wake model is developed. Based on the classical vortex theory, the wake vortex system of each rotor is abstracted as a semi-infinite vortex tube, and a semi-analytical solution for the induced velocity at any point in space by rotor vortex tubes is derived. This forms an efficient computation method for aerodynamic interference between multirotor. Combined with the dynamic inflow model accounting for rotor self-induced velocity, an accurate and efficient model for calculating the induced velocity in multirotor is established. Based on this, the model is validated using wind tunnel test results of thrust-power performance curves for coaxial and tandem rotors. Finally, the aerodynamic interference characteristics between the four rotors of a scaled model of a quad-tiltrotor aircraft are analyzed during the helicopter mode and tilt transition mode. The results show that the model can capture the influence of vertical and horizontal spacing on aerodynamic interference between rotors relatively and accurately, making it suitable for fast analysis of multirotor aerodynamic interference. The aerodynamic interference characteristics between rotors near the helicopter mode of quad-tiltrotor aircraft vary significantly. A reasonable aerodynamic layout and rotor rotation direction design can effectively improve the induced velocity of the disturbed rotor and the load distribution on the rotor disc.
Yeping WANG , Honglei JI , Pan ZHOU , Yi YE . Fast analysis of aerodynamic interference for quad-tiltrotor based on vortex tube model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(2) : 130705 -130705 . DOI: 10.7527/S1000-6893.2024.30705
1 | ZHOU P, CHEN R L, YUAN Y, et al. Aerodynamic interference on trim characteristics of quad-tiltrotor aircraft[J]. Aerospace, 2022, 9(5): 262. |
2 | 周攀, 陈仁良, 俞志明. 倾转四旋翼飞行器直升机模式操纵策略研究[J]. 航空动力学报, 2021, 36(10): 2036-2051. |
ZHOU P, CHEN R L, YU Z M. Investigation of control strategy for quad?tilt?rotor aircraft in helicopter mode[J]. Journal of Aerospace Power, 2021, 36(10): 2036-2051 (in Chinese). | |
3 | 张卫国, 唐敏, 武杰, 等. 倾转旋翼机风洞试验综述[J]. 航空学报, 2024, 45(9): 530114. |
ZHANG W G, TANG M, WU J, et al. Overview of wind tunnel test research on tiltrotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(9)?: 530114 (in Chinese). | |
4 | GIBERTINI G, AUTERI F, CAMPANARDI G, et al. Wind-tunnel tests of a tilt-rotor aircraft[J]. The Aeronautical Journal, 2011, 115(1167): 315-322. |
5 | 张铮, 陈仁良. 倾转旋翼机旋翼/机翼气动干扰理论与试验[J]. 航空学报, 2017, 38(3): 120196. |
ZHANG Z, CHEN R L. Theory and test of rotor/wing aero-interaction in tilt-rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 120196 (in Chinese). | |
6 | 招启军, 倪同兵, 李鹏, 等. 倾转旋翼机流动机理及气动干扰特性试验[J]. 航空动力学报, 2018, 33(12): 2900-2912. |
ZHAO Q J, NI T B, LI P, et al. Experiment on flow mechanism and aerodynamic interaction characteristics of tilt-rotor aircraft[J]. Journal of Aerospace Power, 2018, 33(12): 2900-2912 (in Chinese). | |
7 | DENG J H, FAN F, LIU P A, et al. Aerodynamic characteristics of rigid coaxial rotor by wind tunnel test and numerical calculation[J]. Chinese Journal of Aeronautics, 2019, 32(3): 568-576. |
8 | LAKSHMINARAYAN V K, BAEDER J D. High-resolution computational investigation of trimmed coaxial rotor aerodynamics in hover[J]. Journal of the American Helicopter Society, 2009, 54(4): 042008. |
9 | 李鹏, 招启军. 悬停状态倾转旋翼/机翼干扰流场及气动力的 CFD 计算[J]. 航空学报, 2014, 35(2): 361-371. |
LI P, ZHAO J A. CFD calculations on the interaction flowfield and aerodynamic force of tiltrotor/wing in hover[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2): 361-371 (in Chinese). | |
10 | YE L, ZHANG Y, YANG S, et al. Numerical simulation of aerodynamic interaction for a tilt rotor aircraft in helicopter mode[J]. Chinese Journal of Aeronautics, 2016, 29(4): 843-854. |
11 | 刘佳豪, 李高华, 王福新. 倾转过渡状态旋翼-机翼气动干扰特性[J]. 航空学报, 2022, 43(12): 126097. |
LIU J H, LI G H, WANG F X. Rotor-wing aerodynamic interference characteristics in conversion mode[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 126097 (in Chinese). | |
12 | HWANG J Y, JUNG M K, KWON O J. Numerical study of aerodynamic performance of a multirotor unmanned-aerial-vehicle configuration[J]. Journal of Aircraft, 2014, 52(3): 839-846. |
13 | MISIOROWSKI M, GANDHI F, OBERAI A A. Computational study on rotor interactional effects for a quadcopter in edgewise flight[J]. AIAA Journal, 2019, 57(12): 5309-5319. |
14 | 王军杰, 俞志明, 陈仁良, 等. 倾转四旋翼飞行器垂直飞行状态气动特性[J]. 航空动力学报, 2021, 36(2): 249-263. |
WANG J J, YU Z M, CHEN R L, et al. Aerodynamic characteristics of quad tilt rotor aircraft in vertical flight[J]. Journal of Aerospace Power, 2021, 36(2): 249-263 (in Chinese). | |
15 | BAGAI A, LEISHMAN J G. Free-wake analysis of tandem, tilt-rotor and coaxial rotor configurations[J]. Journal of the American Helicopter Society, 1996, 41(3): 196-207. |
16 | 黄水林. 纵列式直升机双旋翼气动干扰特性的理论与试验研究[D]. 南京: 南京航空航天大学, 2009: 123-135. |
HUANG S L. Theoretical and experimental research on aerodynamic interaction characteristics for tandem twin-rotor helicopters[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009: 123-135? (in Chinese). | |
17 | LEE J, YEE K, SEJONG O H. Aerodynamic characteristic analysis of multi-rotors using a modified free-wake method[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2009, 52(177): 168-179. |
18 | ALVAREZ E J, NING A. High-fidelity modeling of multirotor aerodynamic interactions for aircraft design[J]. AIAA Journal, 2020, 58(10): 4385-4400. |
19 | WANG Z G, WANG Q N, YU H R, et al. Trimming analysis method of quad tilt rotor based on aerodynamic interference model[J]. Journal of Aircraft, 2020, 58(2): 253-265. |
20 | USOV D, APPLETON W, FILIPPONE A, et al. Low-order aerodynamic model for interference in multirotor systems[J]. Journal of Aircraft, 2022, 59(6): 1450-1462. |
21 | 杨克龙, 韩东. 旋翼/机翼气动干扰对复合式直升机性能影响[J]. 北京航空航天大学学报, 2023, 49(7): 1761-1771. |
YANG K L, HAN D. Influence of rotor/wing aerodynamic interference on performance of compound helicopters[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(7): 1761-1771 (in Chinese). | |
22 | LUO J L, ZHU L F, YAN G R. Novel quadrotor forward-flight model based on wake interference[J]. AIAA Journal, 2015, 53(12): 3522-3533. |
23 | HAN D, BARAKOS G N. Aerodynamic interference model for multirotors in forward flight[J]. Journal of Aircraft, 2020, 57(6): 1220-1223. |
24 | DIVAKER M. Equivalent wing numerical lifting line theory for predicting rotor performance and rotor-rotor interference[D]. Gainesville: University of Florida, 2021: 1-2. |
25 | ZHAO J G, HE C J. A finite state dynamic wake model enhanced with vortex particle method–derived modeling parameters for coaxial rotor simulation and analysis[J]. Journal of the American Helicopter Society, 2016, 61(2): 1-9. |
26 | RAND O, KHROMOV V. Free-wake?-??based dynamic inflow model for hover, forward, and maneuvering flight[J]. Journal of the American Helicopter Society, 2018, 63: 012008. |
27 | RAND O, KHROMOV V. Parametric study of dynamic inflow for single and coaxial rotor systems[C]∥ Proceedings of the Vertical Flight Society 73rd Annual Forum. 2017. |
28 | PARK S, IM B, LEE D, et al. Aerodynamic interference analysis for a nonoverlapping multirotor UAV based on dynamic vortex tube[J]. Journal of the American Helicopter Society, 2023, 68(4): 42010-42030. |
29 | KONG Y B, PRASAD J V R, SANKAR L N, et al. Finite state inflow flow model for coaxial rotor configuration[J]. Journal of the American Helicopter Society, 2020, 65(3): 1-11. |
30 | GUNER F, PRASAD J V R, PETERS D A. An approximate finite state dynamic wake model for predictions of inflow below the rotor[J]. Journal of the American Helicopter Society, 2021, 66(3): 1-10. |
31 | KONG Y B, PRASAD J V R, HE C J. Finite state coaxial rotor inflow model enhancements using VVPM-extracted influence coefficients[J]. Journal of the American Helicopter Society, 2020, 65(2): 1-17. |
32 | GUNER F, PRASAD J V R, HE C J, et al. Fidelity enhancement of a multirotor dynamic inflow model via system identification[J]. Journal of the American Helicopter Society, 2022, 67(2): 1-17. |
33 | 曹义华.现代直升机旋翼空气动力学[M]. 北京: 北京航空航天大学出版社, 2015: 150-175. |
CAO Y H. Modern helicopter rotor aerodynamics[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2015: 150-175 (in Chinese). | |
34 | HARRINGTON R. Full scale tunnel investigation of the static thrust performance of a coaxial helicopter rotor: NACA TN-2318[R]. Washington, D.C.: NACA, 1951. |
35 | VATISTAS G H. New model for intense self-similar vortices[J]. Journal of Propulsion and Power, 1998, 14(4): 462-469. |
36 | VATISTAS G H, KOZEL V, MIH W C. A simpler model for concentrated vortices[J]. Experiments in Fluids, 1991, 11(1): 73-76. |
37 | PETERS D A, HAQUANG N. Technical note: Dynamic inflow for practical applications[J]. Journal of the American Helicopter Society, 1988, 33(4): 64-68. |
38 | LEISHMAN J G. Principles of helicopter aerodynamics[M]. 2nd ed. Cambridge: Cambridge University Press, 2006: 115-169. |
/
〈 |
|
〉 |