ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Transfer prediction of satellite traffic based on spatiotemporal correlation
Received date: 2024-07-12
Revised date: 2024-08-05
Accepted date: 2024-09-02
Online published: 2024-09-18
Supported by
Basic Strengthening Plan Technology Field Fund Project(2019-JCJQ-JJ-226)
Accurately predicting the traffic between satellites and ground users is crucial for stable operation of the satellite in response to changes of user demand and environment, thus maintaining efficient performance of the satellite communication system. Traditional machine learning methods require ample historical sample data to predict the traffic of target satellites. However, during major holidays, large-scale population movements can create tidal phenomena in traffic between different satellite service areas. Traditional methods struggle to address this issue due to the absence of historical tidal data specific to the target satellites. To address this issue, this paper presents a satellite traffic migration prediction method based on spatiotemporal correlation. The method initially identifies spatially adjacent satellites using angular conditions and quantifies the spatiotemporal correlation of traffic between different satellites by calculating the time-lagged Pearson correlation coefficient, thereby constructing a source satellite traffic dataset. Subsequently, a common pattern learner is used to dynamically adjust the transfer weights of traffic samples in the source domain dataset. A weighted transfer long short-term memory network is then employed to optimize the transfer learning process, enhancing the model’s ability to predict traffic for the target satellite. Simulations demonstrate that the proposed method can effectively forecast dynamic changes in target satellite traffic.
Yang JIAO , Yuting LU , Ba XU , Jian OUYANG . Transfer prediction of satellite traffic based on spatiotemporal correlation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(4) : 330938 -330938 . DOI: 10.7527/S1000-6893.2024.30938
1 | 安建平, 李建国, 于季弘, 等. 空天通信网络关键技术综述[J]. 电子学报, 2022, 50(2): 470-479. |
AN J P, LI J G, YU J H, et al. Key technologies of space-air-ground communication networks: A survey[J]. Acta Electronica Sinica, 2022, 50(2): 470-479 (in Chinese). | |
2 | GUO H Z, LI J Y, LIU J J, et al. A survey on space-air-ground-sea integrated network security in 6G[J]. IEEE Communications Surveys & Tutorials, 2022, 24(1): 53-87. |
3 | 喻思琪, 张小红, 郭斐, 等. 卫星导航进近技术进展[J]. 航空学报, 2019, 40(3): 022200. |
YU S Q, ZHANG X H, GUO F, et al. Recent advances in precision approach based on GNSS[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 022200 (in Chinese). | |
4 | AL-HRAISHAWI H, CHOUGRANI H, KISSELEFF S, et al. A survey on nongeostationary satellite systems: the communication perspective[J]. IEEE Communications Surveys & Tutorials, 2023, 25(1): 101-132. |
5 | KAWAMOTO Y, TAKAHASHI M, VERMA S, et al. Traffic-prediction-based dynamic resource control strategy in HAPS-mounted MEC-assisted satellite communication systems[J]. IEEE Internet of Things Journal, 2024, 11(8): 13824-13836. |
6 | ZHANG B, WU Y F, ZHAO B Y, et al. Progress and challenges in intelligent remote sensing satellite systems[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1814-1822. |
7 | LI N, HU L, DENG Z L, et al. Research on GRU neural network satellite traffic prediction based on transfer learning[J]. Wireless Personal Communications, 2021, 118(1): 815-827. |
8 | LI R P, ZHAO Z F, ZHENG J C, et al. The learning and prediction of application-level traffic data in cellular networks[J]. IEEE Transactions on Wireless Communications, 2017, 16(6): 3899-3912. |
9 | MIAO Y, BAI X H, CAO Y X, et al. A novel short-term traffic prediction model based on SVD and ARIMA with blockchain in industrial Internet of things[J]. IEEE Internet of Things Journal, 2023, 10(24): 21217-21226. |
10 | WEI G L, LI W Y, DING D R, et al. Stability analysis of covariance intersection-based Kalman consensus filtering for time-varying systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(11): 4611-4622. |
11 | ELDEEB E, SHEHAB M, ALVES H. A learning-based fast uplink grant for massive IoT via support vector machines and long short-term memory[J]. IEEE Internet of Things Journal, 2022, 9(5): 3889-3898. |
12 | CHEN B B, LIN R H, ZOU H. A short term load periodic prediction model based on GBDT[C]∥2018 IEEE 18th International Conference on Communication Technology (ICCT). Piscataway: IEEE Press, 2018: 1402-1406. |
13 | SHEN W X, ZHANG H X, GUO S S, et al. Time-wise attention aided convolutional neural network for data-driven cellular traffic prediction[J]. IEEE Wireless Communications Letters, 2021, 10(8): 1747-1751. |
14 | MA X S, ZHENG B, JIANG G H, et al. Cellular network traffic prediction based on correlation ConvLSTM and self-attention network[J]. IEEE Communications Letters, 2023, 27(7): 1909-1912. |
15 | 潘成胜, 王羽夫, 杨力. 基于改进LSTM算法的天地一体化信息网络流量预测[J]. 天地一体化信息网络, 2020, 1(2): 57-65. |
PAN C S, WANG Y F, YANG L. Traffic prediction of space-integrated-ground information network based on improved LSTM algorithm[J]. Space-Integrated-Ground Information Networks,2020, 1(2): 57-65 (in Chinese). | |
16 | TEDJOPURNOMO D A, BAO Z F, ZHENG B H, et al. A survey on modern deep neural network for traffic prediction: trends, methods and challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(4): 1544-1561. |
17 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359. |
18 | ZHUANG F Z, QI Z Y, DUAN K Y, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2021, 109(1): 43-76. |
19 | NIU S T, LIU M, LIU Y X, et al. Distant domain transfer learning for medical imaging[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(10): 3784-3793. |
20 | ZHANG K, LIU Q, QIAN H, et al. EATN:An efficient adaptive transfer network for aspect-level sentiment analysis[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(1): 377-389. |
21 | 于功也, 蔡伟东, 胡明辉, 等. 故障机理与领域自适应混合驱动的机械故障智能迁移诊断[J]. 航空学报, 2023, 44(2): 426800. |
YU G Y, CAI W D, HU M H, et al. Intelligent migration diagnosis of mechanical faults driven by hybrid fault mechanism and domain adaptation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(2): 426800 (in Chinese). | |
22 | 唐伦, 周鑫隆, 吴婷, 等. 基于集成深度神经网络流量预测的动态网络切片迁移算法[J]. 电子与信息学报, 2023, 45(3): 1074-1082. |
TANG L, ZHOU X L, WU T, et al. Dynamic network slice migration algorithm based on ensemble deep neural network traffic prediction[J]. Journal of Electronics & Information Technology, 2023, 45(3): 1074-1082 (in Chinese). | |
23 | HU D L, CHEN L, FANG H X, et al. Spatio-temporal trajectory similarity measures: a comprehensive survey and quantitative study[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(5): 2191-2212. |
24 | 覃继前, 徐宁辉, 梁月吉. 不同卫星高度角对GPS/GLONASS/BDS/Galileo融合定位的影响[J]. 全球定位系统, 2021, 46(2): 62-68. |
QIN J Q, XU N H, LIANG Y J. The influence of different satellite altitude angles on GPS/GLONASS/BDS/Galileo fusion positioning[J]. GNSS World of China, 2021, 46(2): 62-68 (in Chinese). | |
25 | COSCIA M. Pearson correlations on complex networks[J]. Journal of Complex Networks, 2021, 9(6): cnab036. |
26 | CAKAJ S, KAMO B, LALA A, et al. The coverage analysis for low earth orbiting satellites at low elevation[J]. International Journal of Advanced Computer Science and Applications, 2014, 5(6): 359-382. |
27 | LIU C L, HSAIO W H, TU Y C. Time series classification with multivariate convolutional neural network[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6): 4788-4797. |
28 | HE T, MAO H, YI Z. Subtraction gates: Another way to learn long-term dependencies in recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(4): 1740-1751. |
29 | YU Y, SI X S, HU C H, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural Computation, 2019, 31(7): 1235-1270. |
30 | BI J, XU K Y, YUAN H T, et al. Network attack prediction with hybrid temporal convolutional network and bidirectional GRU[J]. IEEE Internet of Things Journal, 2024, 11(7): 12619-12630. |
31 | JIN R B, CHEN Z H, WU K Y, et al. Bi-LSTM-based two-stream network for machine remaining useful life prediction[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 3511110. |
32 | JIN K, WI J, LEE E, et al. TrafficBERT: Pre-trained model with large-scale data for long-range traffic flow forecasting[J]. Expert Systems with Applications, 2021, 186: 115738. |
33 | YU Y, YAO M B, HUANG J P, et al. When process analysis technology meets transfer learning: a model transfer strategy between different spectrometers for quantitative analysis[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 2507619. |
/
〈 |
|
〉 |