Solid Mechanics and Vehicle Conceptual Design

Longitudinal dynamics modeling and braking performance of towbarless aircraft taxiing system on wet roads

  • Hengjia ZHU ,
  • Kai QI ,
  • Liwen WANG ,
  • Wei ZHANG
Expand
  • 1.College of Aeronautical Engineering,Civil Aviation University of China,Tianjin 300300,China
    2.Aviation Special Ground Equipment Research Base,CAAC,Tianjin 300300,China
    3.Key Laboratory of Smart Airport Theory and System,CAAC,Tianjin 300300,China
    4.College of Safety Science and Engineering,Civil Aviation University of China,Tianjin 300300,China
    5.Research Institute of Science and Technology,Civil Aviation University of China,Tianjin 300300,China

Received date: 2023-10-30

  Revised date: 2023-12-11

  Accepted date: 2024-02-05

  Online published: 2024-03-14

Supported by

National Natural Science Foundation of China(12002367);Fundamental Research Funds for the Central Universities(3122022066);Experimental Technology Innovation Fund of Civil Aviation University of China(2022CXJJ89)

Abstract

Aircraft apron ground operation involves three cases: low-speed (less than 6 kn), middle-speed (6–14 kn), and high-speed (more than 14 kn)(1 kn=1.852 km/h). Compared to the traditional low-speed aircraft towing operation, the traction velocity in the new-generation towbarless aircraft taxiing mode can reach 40 km/h. In this case, wet roads have a significant influence on the braking performance of the Towbarless Aircraft Taxiing System (TLATS). The “pseudo” flow dynamic pressure bearing effect is used as equivalent interaction among the tire, water film and road, and an advanced LuGre tire hydroplaning dynamic model is developed by combining the arbitrary pressure distribution function. The wet road tire adhesion experiments are conducted for a specific tire of the AM210 Towbarless Towing Vehicle (TLTV), and the LuGre tire hydrodynamic model parameters are identified based on the experimental results. A co-simulation dynamic model of the LuGre tire hydrodynamic model in MATLAB/Simulink and the TLATS in Adams/View is established. Employing the same fuzzy PID optimal slip rate control method and considering the rough road vibration excitation, the braking performance of the TLATS under wet road conditions with those under dry road conditions is compared. Results show that the vertical tire dynamic load under wet road conditions is smaller than that under dry road conditions, and the tire grip performance decreases with increase in the water film thickness. The braking distances for class A and class C roads with 1 mm water film thickness increase by 30.9% and 31.3%, respectively, compared to that under dry rough roads with an initial braking speed of 40 km/h. The braking distances of 1 mm water film thickness increase by 2.7% and 2.5%, respectively compared to that of 0.5 mm water film thickness under corresponding working conditions. The results could provide a theoretical basis for accurate prediction of safe braking distances on wet roads in aircraft towing operations.

Cite this article

Hengjia ZHU , Kai QI , Liwen WANG , Wei ZHANG . Longitudinal dynamics modeling and braking performance of towbarless aircraft taxiing system on wet roads[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(16) : 229779 -229779 . DOI: 10.7527/S1000-6893.2023.29779

References

1 RAYMAN R B. Aircraft accident investigation for flight surgeons: SAM-TR-79-12[R]. Alexandria: National Technical Information Service, 1979.
2 孙艳坤, 张威, 杨雄伟, 等. 飞机牵引滑行技术综述[J]. 交通运输工程学报202323( 3): 23- 43.
  SUN Y K, ZHANG W, YANG X W, et al. Review on aircraft towing taxi technologies[J]. Journal of Traffic and Transportation Engineering202323( 3): 23- 43 (in Chinese).
3 WANG H, LV X, ZHANG W, et al. Study on vibration characteristics of the towbarless aircraft taxiing system[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH20226( 2): 175- 188.
4 ZHU H J, ZHANG B Z, LV X, et al. Optimal chassis suspension design for towbarless towing vehicle for aircraft taxiing[J]. SAE International Journal of Advances and Current Practices in Mobility20224( 4): 1445- 1453.
5 李跃明, 李晓云, 柴怡君, 等. 飞机新牵引滑出方式下前起落架动响应分析[J]. 航空学报202243( 6): 526915.
  LI Y M, LI X Y, CHAI Y J, et al. Dynamic response analysis of nose landing gear in aircraft new towing and taxiing mode[J]. Acta Aeronautica et Astronautica Sinica202243( 6): 526915 (in Chinese).
6 戚基艳, 金嘉琦, 付景顺. 舰载机无杆式牵引车横摆稳定性控制[J]. 上海交通大学学报202054( 9): 943- 952.
  QI J Y, JIN J Q, FU J S. Yaw stability control of carrier-based aircraft towbarless tractor carrier[J]. Journal of Shanghai Jiao Tong University202054( 9): 943- 952 (in Chinese).
7 QI K, WANG L W, ZHANG W, et al. Modeling and braking analyses of longitudinal-vertical coupling towbarless aircraft taxiing system[J/OL]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, ( 2023-12-22)[ 2024-02-05]: .
8 WANG N J, ZHOU L J, SONG Q, et al. Simulation research on braking safety properties of aircraft traction system[J]. Key Engineering Materials2010419/420: 705- 708.
9 TEZUKA Y, ISHII H, KIYOTA S. Application of the magic formula tire model to motorcycle maneuverability analysis[J]. JSAE Review200122( 3): 305- 310.
10 谢斌, 李静静, 鲁倩倩, 等. 联合收割机制动系统虚拟样机仿真及试验[J]. 农业工程学报201430( 4): 18- 24.
  XIE B, LI J J, LU Q Q, et al. Simulation and experiment of virtual prototype braking system of combine harvester[J]. Transactions of the Chinese Society of Agricultural Engineering201430( 4): 18- 24 (in Chinese).
11 SZABó B. Vehicle test based validation of a tire brush model using an optical velocity sensor[J]. Periodica Polytechnica Transportation Engineering201240( 1): 33- 38.
12 RAJAPAKSHE M P, GUNARATNE M, KAW A K. Evaluation of LuGre tire friction model with measured data on multiple pavement surfaces[J]. Tire Science and Technology201038( 3): 213- 227.
13 XU N, ZHOU J F, LI X Y, et al. Analysis of the effect of inflation pressure on vehicle handling and stability under combined slip conditions based on the UniTire model[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH20215( 3): 259- 277.
14 CANUDAS DE WIT C, OLSSON H, ASTROM K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control199540( 3): 419- 425.
15 ARAT M ALI, SINGH K B, TAHERI S. An intelligent tyre based adaptive vehicle stability controller[J]. International Journal of Vehicle Design201465( 2/3): 118- 129.
16 MARQUES F, WOLI?SKI ?, WOJTYRA M, et al. An investigation of a novel LuGre-based friction force model[J]. Mechanism and Machine Theory2021166: 104493.
17 左曙光, 苏虎, 王纪瑞. 滚动汽车轮胎自激振动仿真及其影响因素分析[J]. 振动与冲击201231( 4): 18- 24.
  ZUO S G, SU H, WANG J R. Simulation of self-excited vibration of a rolling tire and its influencing factors analysis[J]. Journal of Vibration and Shock201231( 4): 18- 24 (in Chinese).
18 LIANG W, MEDANIC J, RUHL R. Analytical dynamic tire model[J]. Vehicle System Dynamics200846( 3): 197- 227.
19 朱先民, 宋健, 程帅. 基于LuGre模型的商用车转向盘操纵阻力矩研究[J]. 汽车工程201941( 6): 662- 667.
  ZHU X M, SONG J, CHENG S. A research on steering wheel resistance torque of a commercial vehicle based on LuGre model[J]. Automotive Engineering201941( 6): 662- 667 (in Chinese).
20 CHO J R, LEE H W, SOHN J S, et al. Numerical investigation of hydroplaning characteristics of three-dimensional patterned tire[J]. European Journal of Mechanics, A/Solids, 200625( 6): 914- 926.
21 朱晟泽, 黄晓明. 横向刻槽混凝土路面轮胎滑水速度数值模拟研究[J]. 东南大学学报(自然科学版)201646( 6): 1296- 1300.
  ZHU S Z, HUANG X M. Numerical simulation of tire hydroplaning speed on transverse grooved concrete pavements[J]. Journal of Southeast University (Natural Science Edition)201646( 6): 1296- 1300 (in Chinese).
22 曹青青. 路表抗滑特性对整车稳定性影响分析[D]. 南京: 东南大学, 2018.
  CAO Q Q. Analysis of vehicle stability influenced by skid resistance of asphalt pavement[D]. Nanjing: Southeast University, 2018 (in Chinese).
23 蔡靖, 李岳, 宗一鸣. 湿滑道面飞机轮胎临界滑水速度计算方法比较[J]. 航空学报201738( 7): 220798.
  CAI J, LI Y, ZONG Y M. Comparasion of prediction methods for critical hydroplaning speed of aircraft tire on wet pavement[J]. Acta Aeronautica et Astronautica Sinica201738( 7): 220798 (in Chinese).
24 杨洋, 朱兴一, 赵鸿铎. 基于真实道面模型的机轮滑水行为影响因素[J]. 航空学报202243( 1): 124813.
  YANG Y, ZHU X Y, ZHAO H D. Aircraft tire hydroplaning behavior based on real texture of surface runway model[J]. Acta Aeronautica et Astronautica Sinica202243( 1): 124813 (in Chinese).
25 KANE M, DO M T, CEREZO V, et al. Contribution to pavement friction modelling: An introduction of the wetting effect[J]. International Journal of Pavement Engineering201720( 8): 965- 976.
26 GIM G, NIKRAVESH P E. An analytical model of pneumatic tyres for vehicle dynamic simulations. Part 1: Pure slips[J]. International Journal of Vehicle Design201411( 6): 589- 618.
27 郭孔辉. UniTire统一轮胎模型[J]. 机械工程学报201652( 12): 90- 99.
  GUO K H. UniTire: Unified tire model[J]. Journal of Mechanical Engineering201652( 12): 90- 99 (in Chinese)
28 CANUDAS DE WIT C, TSIOTRAS P. Dynamic tire friction models for vehicle traction control[C]∥ Proceedings of the 38th IEEE Conference on Decision and Control. Piscataway: IEEE Press, 1999: 3746- 3751.
29 Economic Commission for Europe of the United Nations. Uniform provisions concerning the approval of tyres with regard to rolling sound emissions and to adhesion on wet surfaces and to rolling resistance: Regulation No. 117 [S]. 2014: 1- 96.
30 ASTM International. Standard test method for determining longitudinal peak braking coefficient (PBC) of paved surfaces using standard reference test tire: [S]. 1990.
31 BAREKET Z, FANCHER P. Representation of truck tire properties in braking and handling studies: The influence of pavement and tire conditions on frictional characteristics: UMTRI-89-33[R]. Washington, D.C.: National Highway Traffic Safety Administration Friction, 1990.
32 许男, 周健锋, 郭孔辉, 等. 胎压载荷耦合效应下复合工况UniTire轮胎模型[J]. 机械工程学报202056( 16): 193- 203.
  XU N, ZHOU J F, GUO K H, et al. UniTire model under combined slip conditions with the coupling effect of inflation pressure and vertical load[J]. Journal of Mechanical Engineering202056( 16): 193- 203 (in Chinese).
33 ZHU H J, YANG J, ZHANG Y Q. Modeling and optimization for pneumatically pitch-interconnected suspensions of a vehicle[J]. Journal of Sound and Vibration2018432: 290- 309.
34 朱贺, 李静菲. 无杆飞机牵引车转弯牵引工况下的制动稳定性分析[J]. 机械设计202037( S1): 72- 76.
  ZHU H, LI J F. Braking stability analysis of rodless aircraft tractor under turning traction condition[J]. Journal of Machine Design202037( S1): 72- 76 (in Chinese).
35 鲁鑫, 孙宇宁, 唐杰, 等. 考虑机轮形变的车辆-飞机牵引滑出系统运动学特性分析[J/OL]. 北京航空航天大学学报,( 2023-04-21)[ 2023-10-30]. .
  LU X, SUN Y N, TANG J, et al. Kinematic characteristics analysis of vehicle-aircraft traction tax system considering wheel deformation[J]. Journal of Beijing University of Aeronautics and Astronautics, ( 2023-04-21)[ 2023-10-30]. (in Chinese).
36 王汉平, 张哲, 李倩. 路面时域模拟的谐波叠加组分中相位角的相干性研究[J]. 北京理工大学学报201939( 10): 1034- 1038.
  WANG H P, ZHANG Z, LI Q. Coherence of phase angle of harmonic superposition components in time domain simulation of road roughness for right and left wheel tracks[J]. Transactions of Beijing Institute of Technology201939( 10): 1034- 1038 (in Chinese).
37 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 机械振动 道路路面谱测量数据报告: [S]. 北京: 中国标准出版社, 2006.
  General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Mechanical vibration—road surface profiles—reporting of measured data: [S]. Beijing: Standards Press of China, 2006 (in Chinese).
38 中国民用航空局. 民用机场飞行区技术标准: [S]. 北京: 中国民航出版社, 2021.
  Civil Aviation Administration of China. Aerodrome technical standards: [S]. Beijing: Civil Aviation Press of China, 2021 (in Chinese).
39 中国民用航空局. 民用机场运行安全管理规定: CCAR-140 [S]. 北京: 中国民航出版社, 2007.
  Civil Aviation Administration of China. Civil airport operation safety management provisions: CCAR-140 [S]. Beijing: Civil Aviation Press of China, 2007 (in Chinese).
40 DE ABREU R, BOTHA T R, HAMERSMA H A. Model-free intelligent control for antilock braking systems on rough roads[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH20237( 3): 269- 285.
41 ZHAO Q, ZHENG H Y, KAKU C, et al. Safety spacing control of truck platoon based on emergency braking under different road conditions[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH20227( 1): 69- 81.
Outlines

/