ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Transient simulation of thermo-fluid-structure-acoustic coupling in regenerative cooling
Received date: 2024-05-21
Revised date: 2024-06-14
Accepted date: 2024-08-20
Online published: 2024-09-09
Supported by
National Natural Science Foundation of China(12072064)
Transient numerical simulations of multi-field coupling involving heat, fluid, solid, and acoustics of regenerative cooling channels in scramjet engines are conducted. The phenomenon of thermoacoustic waves propagating from the solid to the fluid domain, as a result of the rapid heating of combustion chamber walls during ignition of scramjet engines, is examined. The impact of thermoacoustic waves on the extreme values of structural stress and the variation of these waves as they pass through the fluid-structure interface is analyzed. Key parameters such as thermal conductivity, Young’s modulus, density, and thermal expansion coefficient of thermal structure are investigated in terms of their effects on the amplitude and frequency of thermoacoustic waves at the fluid-structure interface. The results show that changes in the Young’s modulus and density of the structure lead to variations in wave speed, affecting the energy propagation speed and significantly influencing the amplitude and frequency of stress and pressure fluctuations at the interface. Altering the thermal conductivity causes variation in the temperature field, thereby affecting the amplitude of stress waves; doubling the thermal conductivity increases the stress peak by 30%, but has almost no effect on the frequency of stress waves and thus has limited impact on the amplitude and frequency of pressure at the interface. Doubling the thermal expansion coefficient increases wall deformation, leading to a doubling of the stress and pressure peaks at the interface, with no significant effect on their frequencies.
Yong KONG , Jinxing DING , Tao PAN , Bo RUAN , Kai YANG , Xiaowei GAO . Transient simulation of thermo-fluid-structure-acoustic coupling in regenerative cooling[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(2) : 130709 -130709 . DOI: 10.7527/S1000-6893.2024.30709
1 | 罗世彬, 庙智超, 宋佳文. 高超声速飞行器前缘主动冷却影响-因素[J]. 航空学报, 2022, 43(12): 627023. |
LUO S B, MIAO Z C, SONG J W. Influencing factors of active cooling at leading edge of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(12): 627023 (in Chinese). | |
2 | ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1929-1953. |
3 | PU H, LI S F, DONG M, et al. Numerical method for coupled thermal analysis of the regenerative cooling structure[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(2): 326-336. |
4 | XIE W H, PENG Z J, MENG S H, et al. Thermal stress analysis of the FGLCS in hypersonic vehicles: Their application to fuel injection struts in scramjets[J]. Composites Part A: Applied Science and Manufacturing, 2017, 99: 157-165. |
5 | CHANDRASEKHAR C S, RAMANUJACHARI V K, REDDY K G. Experimental investigations of hydrocarbon fueled scramjet combustor by employing high temperature materials for the construction of fuel injection struts[J], International Journal of Science and Technology, 2012, 1(12): 671-678. |
6 | ZHE Z. Study on heat transfer and flow instability of supercritical water in vertical tube[J]. Atomic Energy Science and Technology, 2015, 49(11): 2011-2016. |
7 | THIEDE R G, RICCIUS J R, REESE S. Life prediction of rocket combustion-chamber-type thermomechanical fatigue panels[J]. Journal of Propulsion and Power, 2017, 33(6): 1529-1542. |
8 | YANG Z Q, BI Q C, LIU Z H, et al. Heat transfer to supercritical pressure hydrocarbons flowing in a horizontal short tube[J]. Experimental Thermal and Fluid Science, 2015, 61: 144-152. |
9 | HAO H T, SCALO C, SEN M, et al. Thermoacoustics of solids: a pathway to solid state engines and refrigerators[J]. Journal of Applied Physics, 2018, 123(2): 024903. |
10 | HAO H T, SCALO C, SEMPERLOTTI F. Traveling and standing thermoacoustic waves in solid media[J]. Journal of Sound and Vibration, 2019, 449: 30-42. |
11 | HAO H T, SCALO C, SEMPERLOTTI F. Axial-mode solid-state thermoacoustic instability: An analytical parametric study[J]. Journal of Sound and Vibration, 2020, 470: 115159. |
12 | HAO H T, SCALO C, SEMPERLOTTI F. On the use of negative thermal expansion engineered structures in flexural-mode solid-state thermoacoustics[J]. Journal of Sound and Vibration, 2022, 538: 117223. |
13 | GOPINATH N K, GOVINDARAJAN K V, MAHAPATRA D R. Fluid-thermo-structural response of actively cooled scramjet combustor in hypersonic accelerating-cruise flight[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123060. |
14 | FERRAIUOLO M, PETRILLO W, RICCIO A. On the thermo-structural response of a composite closeout in a regeneratively cooled thrust chamber[J]. Aerospace Science and Technology, 2017, 71: 402-411. |
15 | EVRIM C, CHU X, SILBER F E, et al. Flow features and thermal stress evaluation in turbulent mixing flows[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121605. |
16 | HOU G N, WANG J, LAYTON A. Numerical methods for fluid-structure interaction-a review[J]. Communications in Computational Physics, 2012, 12(2): 337-377. |
17 | MOSER F, JACOBS L J, QU J M. Modeling elastic wave propagation in waveguides with the finite element method[J]. NDT & E International, 1999, 32(4): 225-234. |
18 | ZONG Z Y, CHEN F B, YIN X Y, et al. Effect of stress on wave propagation in fluid-saturated porous thermoelastic media[J]. Surveys in Geophysics, 2023, 44(2): 425-462. |
19 | SAFARI-KAHNAKI A, HOSSEINI S M, TAHANI M. Thermal shock analysis and thermo-elastic stress waves in functionally graded thick hollow cylinders using analytical method[J]. International Journal of Mechanics and Materials in Design, 2011, 7(3): 167-184. |
20 | SONG J W, SUN B. Thermal-structural analysis of regeneratively-cooled thrust chamber wall in reusable LOX/Methane rocket engines[J]. Chinese Journal of Aeronautics, 2017, 30(3): 1043-1053. |
21 | LI Y, XIE G N, FU J H, et al. Transient flow and heat transfer in a horizontal rectangular channel considering thermal–fluid–structure interaction[J]. Journal of Energy Resources Technology, 2022, 144(11): 112107. |
22 | LI N, XU H. Fluid-thermal-structural characteristics of spiral square channel[J]. Journal of Thermal Science and Engineering Applications, 2021, 13(3): 031008. |
23 | GAO F, ZHANG Q, XIAO H Y, et al. Analysis of influence of structural parameters of regenerative cooling channel of scramjet[J]. Journal of Physics: Conference Series, 2020, 1634(1): 012159. |
24 | SU W Y, AN H, WANG M Y. Fluid–thermal–structure interaction of hypersonic inlets under different aspect ratios[J]. AIAA Journal, 2023, 61(9): 3722-3734. |
25 | LIU H Y, GAO X W, XU B B. An implicit free element method for simulation of compressible flow[J]. Computers & Fluids, 2019, 192: 104276. |
26 | JIANG W W, GAO X W. Analysis of thermo-electro-mechanical dynamic behavior of piezoelectric structures based on zonal Galerkin free element method[J]. European Journal of Mechanics A, 2023, 99: 104939. |
27 | 高效伟, 丁金兴, 刘华雩. 有限线法及其在流固域间耦合传热中的应用[J]. 物理学报, 2022, 71(19): 1-12. |
GAO X W, DING J X, LIU H Y. Finite line method and its application in coupled heat transfer between fluid-solid domains[J]. Acta Physica Sinica, 2022, 71(19): 1-12 (in Chinese). | |
28 | ZHU Y M, GAO X W. Element differential method for computational acoustics in time domain[J]. International Journal of Computational Methods, 2023, 20(1): 2250031. |
29 | HUANG S Z, RUAN B, MENG H, et al. Boundary effects on flow oscillations in transient heat transfer of n-decane at supercritical pressure[J]. International Journal of Heat and Mass Transfer, 2018, 123: 821-825. |
30 | RUAN B, HUANG S Z, MENG H, et al. Flow dynamics in transient heat transfer of n-decane at supercritical pressure[J]. International Journal of Heat and Mass Transfer, 2017, 115: 206-215. |
31 | RUAN B, HUANG S Z, MENG H, et al. Transient responses of turbulent heat transfer of cryogenic methane at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2017, 109: 326-335. |
32 | ANSYS, Inc. Ansys? Fluent, Release 2021 R2, help system, theory guide[M]. Canonsburg:ANSYS, Inc., 2021. |
33 | 李家齐, 阮波, 高效伟. 超临界正癸烷同轴剪切喷注热声振荡数值模拟[J]. 航空学报, 2020, 41(11): 123708. |
LI J Q, RUAN B, GAO X W. Numerical simulation of thermoacoustic oscillations during n-decane shear-coaxial injection processes at supercritical pressure[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 123708 (in Chinese). | |
34 | 王亚洲, 华益新, 孟华. 超临界压力下低温甲烷的湍流传热数值研究[J]. 推进技术, 2010, 31(5): 606-611, 622. |
WANG Y Z, HUA Y X, MENG H. Numerical investigation of turbulent heat transfer of cryogenic-propellant methane under supercritical pressures[J]. Journal of Propulsion Technology, 2010, 31(5): 606-611, 622 (in Chinese). | |
35 | ALIPOUR S M, KIANI Y, ESLAMI M R. Rapid heating of FGM rectangular plates[J]. Acta Mechanica, 2016, 227(2): 421-436. |
36 | 刘波. 超临界压力流体在圆管内对流换热及热裂解研究[D]. 北京: 清华大学, 2013. |
LIU B. Study on convective heat transfer and thermal cracking of supercritical pressure fluid in circular tube[D].Beijing: Tsinghua University, 2013 (in Chinese). | |
37 | LIU B, ZHU Y H, YAN J J, et al. Experimental investigation of convection heat transfer of n-decane at supercritical pressures in small vertical tubes[J]. International Journal of Heat and Mass Transfer, 2015, 91: 734-746. |
38 | 杜功焕, 朱哲民, 龚秀芬. 声学基础[M]. 3版. 南京: 南京大学出版社, 2012. |
DU G H, ZHU Z M, GONG X F. Acoustics foundation[M]. 3rd ed. Nanjing: Nanjing University Press, 2012 (in Chinese). |
/
〈 |
|
〉 |