Special Topic: Flexible Aerodynamic Deceleration Technologies

Folding optimization design and deployment analysis for film drag balloon

  • Keying YANG ,
  • Ning JIAO ,
  • Ruonan ZHANG
Expand
  • School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China

Received date: 2024-06-20

  Revised date: 2024-07-29

  Accepted date: 2024-08-21

  Online published: 2024-09-02

Supported by

National Level Project(KJSP2020010301);National Natural Science Foundation of China(12232003)

Abstract

The drag balloon is one of the primary devices for deorbiting of low Earth orbit spacecraft at the end of their life. Since the thin membrane sphere must be stored in a confined space for an extended period before use, achieving high-density and low-damage folding and smooth inflation and deployment is crucial for its operation. Considering the drag balloon is mostly composed of a certain number of bonded valves, an optimal valve configuration design method that considers shape stability and cost efficiency is firstly proposed. Furthermore, for the single petal structure, a symmetrical parallel z-type folding scheme is proposed, and methods for quantifying the folded volume and damage are provided. Then, to increase the folding-deployment ratio and reduce crease damage, an optimized folding scheme for the drag balloon is presented, and simulation of a sphere of 6-meter diameter is conducted. Based on this scheme, the effects of valve configuration, inflation speed, and initial internal pressure and temperature on the smooth deployment of the drag balloon are analyzed. The results show that the proposed folding scheme can achieve high-density and low-damage folding of the drag balloon. Additionally, by increasing the number of valves, slowing down the inflation speed, avoiding excessive vacuum, and reducing direct sunlight exposure, the attitude oscillation during the deployment process can be effectively mitigated, speeding up the attainment of a stable state.

Cite this article

Keying YANG , Ning JIAO , Ruonan ZHANG . Folding optimization design and deployment analysis for film drag balloon[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(1) : 630849 -630849 . DOI: 10.7527/S1000-6893.2024.30849

References

1 ZHANG J R, YUAN Y R, YANG K Y, et al. Long-term evolution of the space environment considering constellation launches and debris disposal[J]. IEEE Transactions on Aerospace and Electronic Systems202359(5): 6124-6137.
2 ZHANG J R, ZHANG R N, YANG K Y. Attitude stability analysis and configuration design of pyramid drag sail for deorbit missions[J]. Journal of Aerospace Engineering202235(6): 04022084.
3 NOCK K, GATES K, AARON K, et al. Gossamer orbit lowering device (GOLD) for safe and efficient de-orbit[C]∥ Proceedings of the AIAA/AAS Astrodynamics Specialist Conference. Reston: AIAA, 2010.
4 RODDY M, HODGES H, ROE L, et al. Solid state gas generator for small satellite deorbiter[C]∥ 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). Piscataway: IEEE Press, 2017: 644-649.
5 张义. 超轻充气自维型增阻球设计与分析[D]. 哈尔滨: 哈尔滨工业大学, 2019: 37-50.
  ZHANG Y. Design and analysis of ultra-light inflatable self-shape-maintenance drag balloon [D]. Harbin: Harbin Institute of Technology, 2019: 37-50 (in Chinese).
6 曹生珠, 王虎, 张凯锋, 等. 柔性气阻球帆主动离轨装置及其在轨飞行验证[J]. 空间碎片研究202121(3): 29-33.
  CAO S Z, WANG H, ZHANG K F,et al. Active deorbit device of membrane spherical sail and its flight verification[J]. Space Debris Research202121(3): 29-33 (in Chinese).
7 刘世毅, 王立武. 折纸技术在空间结构中的应用和发展[J]. 航天返回与遥感202041(6): 114-128.
  LIU S Y, WANG L W. Development and application of origami in space structure[J]. Spacecraft Recovery & Remote Sensing202041(6): 114-128 (in Chinese).
8 HINKLE J, LIN J, WATSON J. Deployment testing of an expandable lunar habitat[C]∥ Proceedings of the AIAA SPACE 2009 Conference & Exposition. Reston: AIAA, 2009.
9 卫剑征, 张义, 侯一心, 等. 全向增阻离轨的充气薄膜球设计与性能分析[J]. 清华大学学报(自然科学版)202363(3): 302-310.
  WEI J Z, ZHANG Y, HOU Y X, et al. Design and performance analysis of an inflatable film balloon for drag deorbiting[J]. Journal of Tsinghua University (Science and Technology)202363(3): 302-310 (in Chinese).
10 张成龙, 陈南梁, 耿奕, 等. 高密经编浮空器蒙皮材料的制备与力学行为研究[J]. 复合材料科学与工程2020(9): 42-47.
  ZHANG C L, CHEN N L, GENG Y, et al. Study on preparation and mechanical behavior of high-density warp knitted aerostat envelope material[J]. Composites Science and Engineering2020(9): 42-47 (in Chinese).
11 OKUIZUMI N, YAMAMOTO T. Centrifugal deployment of membrane with spiral folding: Experiment and simulation[J]. Journal of Space Engineering20092(1): 41-50.
12 WANG C Y. Elasto-plastic folding of thin sheets[J]. Acta Mechanica198767(1): 139-150.
13 SATOU Y, FURUYA H. Mechanical properties of Z-fold membrane under elasto-plastic deformation[J]. Journal of Space Engineering20114(1): 14-26.
14 陈丽. 薄膜抛物面反射器的圆柱式折叠研究[D]. 哈尔滨: 哈尔滨工业大学, 2007: 52-64.
  CHEN L. Cylindrical fold study of a large in-space deployable membrane parabolic reflector[D]. Harbin: Harbin Institute of Technology, 2007: 52-64 (in Chinese).
15 唐愉真, 刘超, 肖洪, 等. 可展薄膜的Miura弹性折痕建模与分析[J]. 哈尔滨工业大学学报202355(1): 1-11.
  TANG Y Z, LIU C, XIAO H, et al. Modeling and analysis of miura elastic creases for deployable membrane[J]. Journal of Harbin Institute of Technology202355(1): 1-11 (in Chinese).
16 卜亚楼, 蔡榕, 杨燕初, 等. 南瓜型超压气球展开稳定性研究[J]. 计算机仿真202340(5): 56-63.
  BU Y L, CAI R, YANG Y C, et al. Study on stability of pumpkin shape super pressure balloon deployment[J]. Computer Simulation202340(5): 56-63 (in Chinese).
17 杨宝生, 姜毅, 杨哩娜. 基于粒子法的可变边界柔性气缸弹射研究[J]. 振动与冲击202342(10): 43-50+154.
  YANG B S, JIANG Y, YANG L N. Research on flexible cylinder ejection with variable boundary based on corpuscular method[J]. Journal of Vibration and Shock202342(10): 43-50+154 (in Chinese).
18 郭敏. 充气式减速器的折叠充气展开动力学数值计算[D]. 大连: 大连理工大学, 2022: 17-23.
  GUO M. Numerical analysis of folding and deployment dynamics for inflatable decelerator[D].Dalian: Dalian University of Technology, 2022: 17-23 (in Chinese) .
19 SUN J L, JIN D P, HU H Y. Deployment dynamics and topology optimization of a spinning inflatable structure[J]. Acta Mechanica Sinica202238(10): 122100.
20 梁鹏, 薛齐文, 张岩, 等. 折叠球形气囊展开过程仿真[J]. 航空工程进展201910(4): 562-568.
  LIANG P, XUE Q W, ZHANG Y, et al. Simulation of the expansion process of folded spherical airbag[J]. Advances in Aeronautical Science and Engineering201910(4): 562-568 (in Chinese).
21 SMITH M S, RAINWATER E L. Optimum designs for superpressure balloons[J]. Advances in Space Research200433(10): 1688-1693.
22 JIAO N, YANG K Y, ZHANG J R. Research on folding and inflation process of the drag balloon deorbit device[C]∥ AOPC 2023: Laser Technology and Applications and Optoelectronic Devices and Integration. SPIE, 2023: 194-204.
23 李懿德, 恽卫东, 郑琦, 等. 国内最大离轨帆成功在轨展开[N].科技日报, (2022-07-05)[2023-08-12].
  LI Y D, YUN W D, ZHENG Q, et al. China’s largest deorbit sail successfully unfolds in orbit[N]. Science and Technology Daily, (2022-07-05)[2023-08-12] (in Chinese).
Outlines

/