ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Anti-interference control of a single-frame controlled moment SGCMG servo system based on integral terminal sliding mode
Received date: 2024-06-03
Revised date: 2024-07-11
Accepted date: 2024-08-20
Online published: 2024-09-02
Supported by
National Natural Science Foundation of China(62273040)
The Single Gimbal Control Moment Gyroscope (SGCMG) is a crucial component in spacecraft attitude control. To address the impact of flexible isolators and unknown disturbances in space, a composite control scheme based on Integral Terminal Sliding Mode Control (ITSMC) and Finite-Time Disturbance Observer (FTDO) has been designed. This scheme effectively eliminates the uncertain disturbances present in flexible isolators and achieves the desired velocity within the convergence time. Compared to traditional PI controllers, the designed integral terminal sliding mode controller exhibits lower fluctuation amplitude and oscillation frequency, with a steady-state error ≤ 0.032, a 40% faster adjustment time, and a 24% reduction in overshoot, demonstrating stronger disturbance rejection capabilities. Additionally, a finite-time observer is designed for disturbance compensation on the integral terminal sliding mode controller, resulting in a further reduction of steady-state error to ≤ 0.003 and an overshoot reduced to 1%. The composite controller shows low chattering and strong disturbance rejection, effectively eliminating unknown disturbances in space. Finally, MATLAB simulations confirm that the proposed method achieves the desired performance.
Ming LU , Nuo SU , Weiheng ZHAO , Ge CAO , Limei TIAN , Qiang ZHANG . Anti-interference control of a single-frame controlled moment SGCMG servo system based on integral terminal sliding mode[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(S1) : 730768 -730768 . DOI: 10.7527/S1000-6893.2024.30768
1 | 李海涛, 林杰, 韩邦成. 基于ESO的DGVSCMG双框架伺服系统不匹配扰动抑制[J]. 航空学报, 2018, 39(4): 421641. |
LI H T, LIN J, HAN B C. Mismatched disturbance rejection of double gimbal servo system in variable speed control moment gyroscope using a novel ESO method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 421641 (in Chinese). | |
2 | PECHEV A N. Feedback-based steering law for control moment gyros[J]. Journal of guidance, control, and dynamics, 2007, 30(3): 848-855. |
3 | LAI L, WEI W S, LI G, et al. Design of gimbal control system for miniature control moment gyroscope[C]?∥ 2018 Chinese Automation Congress (CAC). Piscataway: IEEE Press, 2018: 3529-3533. |
4 | 黄首清, 刘守文, 翟百臣, 等. 基于综合应力工作态试验和神经网络的CMG失效边界域预测[J]. 航空学报, 2021, 42(4): 524208. |
HUANG S Q, LIU S W, ZHAI B C, et al. Prediction of CMG failure boundary domain based on combined stress test and neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524208 (in Chinese). | |
5 | LU M, SU N, ZHAO W H, et al. Research on dynamics and control strategy for flexible mounting control moment gyroscope[C]∥ 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). Piscataway: IEEE Press, 2019: 412-417. |
6 | ZHANG Y, ZANG Y, LI M, et al. Active-passive integrated vibration control for control moment gyros and its application to satellites[J]. Journal of Sound Vibration, 2017, 394: 1-14. |
7 | ZHANG Y, LI M, SONG Z Y, et al. Design and analysis of a moment control unit for agile satellite with high attitude stability requirement[J]. Acta Astronautica, 2016, 122: 90-105. |
8 | TANG J Q, ZHANG M, CUI X, et al. Neural network sliding model control of radial translation for magnetically suspended rotor (MSR) in control moment gyro[J]. Actuators, 2023, 12(6): 217. |
9 | LEBEDEV E L, REPIN A O. Influence of kinematic layout of control moment gyros with ball-bearing supported rotors on the dynamics of heating their elements in vacuum[J]. Gyroscopy and Navigation, 2023, 14(2): 176-181. |
10 | PAN S, XU Z F, LU M, et al. The coupling analysis for the gimbal servo system of a control moment gyroscope considering the influence of a flexible vibration isolator[J]. ISA Transactions, 2023, 137: 601-614. |
11 | LU M, LI X, LI Y H. Attenuation of wide margin disturbance fluctuation in SGCMG gimbal servo system[C]∥ 2012 15th International Conference on Electrical Machines and Systems (ICEMS). Piscataway: IEEE Press, 2012: 1-4. |
12 | LI H T, NING X, HAN B C. Composite decoupling control of gimbal servo system in double-gimbaled variable speed CMG via disturbance observer[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(1): 312-320. |
13 | LI H T, ZHENG S Q, NING X. Precise control for gimbal system of double gimbal control moment gyro based on cascade extended state observer[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 4653-4661. |
14 | LUNGU M H. Control of double gimbal control moment gyro systems using the backstepping control method and a nonlinear disturbance observer[J]. Acta Astronautica, 2021, 180: 639-649. |
15 | LEE J H, LEE J Y, OH H S. Satellite disturbance detection and rejection with control moment gyros[J]. Journal of Physics: Conference Series, 2021, 1780(1): 012027. |
16 | BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control, Signals and Systems, 2005, 17(2): 101-127. |
17 | DING S H, LI S H. Sliding mode control of spacecraft attitude with finite-time convergence[C]∥ 2006 6th World Congress on Intelligent Control and Automation. Piscataway: IEEE Press, 2006: 830-834. |
18 | LIN F N, XUE G M, LI S G, et al. Finite-time sliding mode fault-tolerant neural network control for nonstrict-feedback nonlinear systems[J]. Nonlinear Dynamics, 2023, 111(18): 17205-17227. |
19 | BRAHMI H, AMMAR B, KSIBI A, et al. Finite-time complete periodic synchronization of memristive neural networks with mixed delays[J]. Scientific Reports, 2023, 13: 12545. |
20 | GONG S Y, ZHENG M R, HU J, et al. Event-triggered cooperative control for high-order nonlinear multi-agent systems with finite-time consensus[J]. International Journal of Applied Mathematics and Computer Science, 2023, 33(3): 439-448. |
21 | WANG D W, YANG W, YANG J F, et al. Research on the vibration characteristics and performance optimization of the rotor-shaft system of an unbalanced permanent magnet synchronous motor[J]. Journal of Mechanical Science and Technology, 2023, 37(9): 4425-4439. |
22 | MORIMOTO S, TAKEDA Y, HIRASA T. Current phase control methods for permanent magnet synchronous motors[J]. IEEE Transactions on Power Electronics, 1990, 5(2): 133-139. |
23 | CHEN P J, PAN T H, CHEN S. Development of double closed-loop vector control using model predictive control for permanent magnet synchronous motor[J]. Journal of Control, Automation and Electrical Systems, 2021, 32(3): 774-785. |
24 | WANG X L, HONG Y G. Finite-time consensus for multi-agent networks with second-order agent dynamics[J]. IFAC Proceedings Volumes, 2008, 41(2): 15185-15190. |
25 | 崔凯鑫, 段广仁. 基于干扰观测器的一类组合航天器高阶全驱抗干扰控制[J]. 航空学报, 2024, 45(1): 628892. |
CUI K X, DUAN G R. High-order fully actuated anti-disturbance control for a type of combined spacecraft based on disturbance observer[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628892 (in Chinese). | |
26 | BHAT S P, BERNSTEIN D S. Continuous finite-time stabilization of the translational and rotational double integrators[J]. IEEE Transactions on Automatic Control, 1998, 43(5): 678-682. |
27 | BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766. |
28 | 王忠, 廖宇新, 魏才盛, 等. 高超声速飞行器快速终端滑模保性能容错控制[J]. 航空学报, 2023, 44(24): 328476. |
WANG Z S, LIAO Y X, WEI C S, et al. Fast terminal sliding mode fault-tolerant control of hypersonic vehicle with guaranteed performance[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 328476 (in Chinese). |
/
〈 |
|
〉 |