Fluid Mechanics and Flight Mechanics

Integrated design of homogeneous mixing and heating of flow based on dual-throat Ludwieg tube wind tunnel settling chamber

  • Guoliang RONG ,
  • Yifan YANG ,
  • Chuangchuang LI ,
  • Zhiyuan LI ,
  • Xueliang LI ,
  • Jiaquan ZHAO ,
  • Jie WU
Expand
  • 1.School of Aerospace Engineering,Huazhong University of Science and Technology,Wuhan 430074,China
    2.Department of Engineering,University of Bristol,Bristol BS8 1QU,UK
E-mail: jiewu@hust.edu.cn

Received date: 2024-07-04

  Revised date: 2024-07-24

  Accepted date: 2024-08-19

  Online published: 2024-08-26

Abstract

The dual-throat Ludwieg tube wind tunnel can effectively eliminate the disturbances caused by the opening process of the fast-acting valve, but will significantly reduce the effective running time of wind tunnel. Additionally, due to the limitations of the material of the fast-acting valve, it is difficult to further increase the heating temperature of the storage section of the Ludwieg tube wind tunnel. To solve this problem, this paper proposes a novel design for the dual-throat Ludwieg tube wind tunnel by placing the annular heater in the settling chamber to achieve an integrated design of homogeneous mixing and heating of flow. Firstly, unsteady numerical simulation is used to verify the feasibility of the dual-throat Ludwieg wind tunnel with the new layout. Then, the start-up characteristics of the wind tunnel is analyzed, and the variation of Mach number and pressure at different stations during the running of the wind tunnel is quantitatively studied. Finally, the effect of the heater on the running process of the tunnel is explored. The results show that the effective operating time of dual-throat Ludwieg tube wind tunnel with a heater in the settling chamber is up to 80 ms, an increase of 23% compared to that of the traditional dual-throat layout. Additionally, when the heater temperature is increased from 434 K to 1 234 K, the maximum deviation of Mach number in the core region at the exit of the second nozzle can be decreased by 0.21%, the root mean square deviation can be decreased by 0.005, and the stagnation temperature can be increased by nearly 270 K, and the testing capability of the wind tunnel is enhanced effectively.

Cite this article

Guoliang RONG , Yifan YANG , Chuangchuang LI , Zhiyuan LI , Xueliang LI , Jiaquan ZHAO , Jie WU . Integrated design of homogeneous mixing and heating of flow based on dual-throat Ludwieg tube wind tunnel settling chamber[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(9) : 130906 -130906 . DOI: 10.7527/S1000-6893.2024.30906

References

1 BERTIN J J, CUMMINGS R M. Fifty years of hypersonics: Where we’ve been, where we’re going[J]. Progress in Aerospace Sciences200339(6/7): 511-536.
2 BERTIN J J, CUMMINGS R M. Critical hypersonic aerothermodynamic phenomena?[J]. Annual Review of Fluid Mechanics200638(1): 129-157.
3 FEDOROV A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics201143(1): 79-95.
4 MORTENSEN C H, ZHONG X L. Real-gas and surface-ablation effects on hypersonic boundary-layer instability over a blunt cone[J]. AIAA Journal201654(3): 980-998.
5 吴正园, 莫凡, 高振勋, 等. 湍流边界层与高温气体效应耦合的直接数值模拟[J]. 空气动力学学报202038(6): 1111-1119, 1128.
  WU Z Y, MO F, GAO Z X, et al. Direct numerical simulation of turbulent and high-temperature gas effect coupled flow[J]. Acta Aerodynamica Sinica202038(6): 1111-1119, 1128 (in Chinese).
6 唐志共, 许晓斌, 杨彦广, 等. 高超声速风洞气动力试验技术进展[J]. 航空学报201536(1): 86-97.
  TANG Z G, XU X B, YANG Y G, et al. Research progress on hypersonic wind tunnel aerodynamic testing techniques?[J]. Acta Aeronautica et Astronautica Sinica201536(1): 86-97 (in Chinese).
7 尤文佳, 王慧杰, 韩仁坤, 等. 高超声速风洞现代试验设计方法研究[J]. 实验流体力学202236(3): 20-32.
  YOU W J, WANG H J, HAN R K, et al. Using modern design of experiments method for hypersonic wind tunnel test?[J]. Journal of Experiments in Fluid Mechanics202236(3): 20-32 (in Chinese).
8 吴杰. Ludwieg管向超声速流域拓展的设计技术[J]. 空气动力学学报201836(3): 480-492.
  WU J. Extention of hypersonic Ludwieg tube to supersonic wind tunnel[J]. Acta Aerodynamica Sinica201836(3): 480-492 (in Chinese).
9 CUMMINGS R, MCLAUGHLIN T. Hypersonic Ludwieg tube design and future usage at the US air force academy?[C]?∥50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
10 JUHANY K A, DARJI A. Force measurement in a Ludwieg tube tunnel[J]. Journal of Spacecraft and Rockets200744(1): 88-93.
11 CASPER M, SCHOLZ P, WINDTE J, et al. Hypersonic PIV in a Ludwieg tube wind tunnel at Mach 5.9[C]?∥28th Aerodynamic Measurement Technology, Ground Testing, and Flight Testing Conference. Reston: AIAA, 2012.
12 HSU P S, JIANG N B, JEWELL J S, et al. 100-kHz PLEET for hypersonic flow velocity measurements in a Mach 6 Ludwieg tube[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
13 ODDO R, HILL J L, REEDER M F, et al. Effect of surface cooling on second-mode dominated hypersonic boundary layer transition?[J]. Experiments in Fluids202162(7): 144.
14 张成键, 桂裕腾, 李学良, 等. 小攻角下波纹壁对圆锥高超声速边界层稳定性的影响[J]. 气体物理20249(2): 66-80.
  ZHANG C J, GUI Y T, LI X L, et al. Effect of wavy wall on the stability of conical hypersonic boundary layer at small angle of attack[J]. Physics of Gases20249(2): 66-80 (in Chinese).
15 李学良, 李创创, 苏伟, 等. 分布式粗糙元对高超声速边界层不稳定性的影响试验[J]. 航空学报202445(2): 85-103.
  LI X L, LI C C, SU W, et al. Experiment of influence of distributed roughness elements on hypersonic boun-dary layer instability[J]. Acta Aeronautica et Astronautica Sinica202445(2): 85-103 (in Chinese).
16 张成键, 吕岱霖, 朱畅, 等. HyTRV升力体高超声速边界层稳定性实验[J]. 航空学报202445(22): 130272.
  ZHANG C J, LYU D L, ZHU C, et al. Hypersonic boundary layer stability experiment of HyTRV lift body[J]. Acta Aeronautica et Astronautica Sinica202445(22): 130272 (in Chinese).
17 李学良, 李创创, 张亚寒, 等. 分布式烧蚀形貌对高超声速平板边界层不稳定性影响[J]. 航空学报202546(2): 74-94.
  LI X L, LI C C, ZHANG Y H, et al. Effect of distri-buted ablation pattern on hypersonic boundary-layer instability with a flat plate[J]. Acta Aeronautica et Astronautica Sinica202546(2): 74-94 (in Chinese).
18 熊有德, 李创创, 张振辉, 等. 高超声速风洞自由来流扰动热线测量技术[J]. 航空学报202445(10): 48-61.
  XIONG Y D, LI C C, ZHANG Z H, et al. Measurement of freestream disturbance in hypersonic wind tunnel with hot-wire anemometer[J]. Acta Aeronautica et Astronautica Sinica202445(10): 48-61 (in Chinese).
19 LI Z Y, XIONG Y D, YUAN X X, et al. A variant design of hypersonic ludwieg tube wind tunnel[J]. AIAA Journal202260(7): 3990-4005.
20 黄冉冉, 张成键, 李创创, 等. 华中科技大学?0.5 m马赫6 Ludwieg管风洞设计与流场初步校测[J]. 空气动力学学报202341(1): 39-48, 85.
  HUANG R R, ZHANG C J, LI C C, et al. Design and preliminary freestream calibration of HUST ? 0.5 m Mach 6 Ludwieg tube wind tunnel[J]. Acta Aerodynamica Sinica202341(1): 39-48, 85 (in Chinese).
21 MUNOZ F, WU J, RADESPIEL R, et al. Freestream disturbances characterization in ludwieg tubes at Mach 6[C]?∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
22 WU J, RADESPIEL R. Experimental investigation of a newly designed supersonic wind tunnel[J]. Progress in Flight Physics20157: 123-144.
23 WU J, RADESPIEL R. Damping insert materials for settling chambers of supersonic wind tunnels?[J]. Experiments in Fluids201758(3): 19.
24 WOLF T, ESTORF M, RADESPIEL R. Investigation of the starting process in a ludwieg tube[J]. Theoretical and Computational Fluid Dynamics200721(2): 81-98.
25 WU J, RADESPIEL R. Tandem nozzle supersonic wind tunnel design?[J]. International Journal of Engineering Systems Modelling and Simulation20135(1/2/3): 8-18.
26 李志远. 双喉道气动布局对Ludwieg管风洞的流场影响研究[D]. 武汉: 华中科技大学, 2021.
  LI Z Y. Study on the influence of double throat aerodynamic layout on the flow field in Ludwieg tube wind tunnel[D]. Wuhan: Huazhong University of Science and Technology, 2021 (in Chinese).
27 李创创, 李志远, 张振辉, 等. 双喉道Ludwieg管风洞启动过程及其有效运行时间延长[J]. 气体物理20249(1): 58-69.
  LI C C, LI Z Y, ZHANG Z H, et al. Starting process of a double-throat Ludwieg tube tunnel and the extension of its effective running time[J]. Physics of Gases20249(1): 58-69 (in Chinese).
28 赵家权, 司马学昊, 黄冉冉, 等. 一种采用双弯管储气段布局的高超声速Ludwieg管设计[J]. 空气动力学学报202240(4): 90-100.
  ZHAO J Q, SIMA X H, HUANG R R, et al. Design of a hypersonic Ludwieg tunnel with a double-bent storage tube[J]. Acta Aerodynamica Sinica202240(4): 90-100 (in Chinese).
Outlines

/