ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Optimised Harris hawks multi-UAV dynamic target search with fused infographics
Received date: 2024-06-03
Revised date: 2024-08-02
Accepted date: 2024-08-19
Online published: 2024-08-26
Supported by
National Key Laboratory of Air-based Information Perception and Fusion and the Aeronautic Science Foundation of China(20220001068001);Natural Science Basic Research Plan in Shanxi Province of China(2023-JC-QN-0733);Yunnan Province Science Technology Talent and Platform Plan (Academician Expert Workstation)(202305AF150152)
In the study of cooperative search for moving targets by multi-Unmanned Aerial Vehicle (multi-UAV), this paper proposes a cooperative search decision-making method that integrates an information graph model with the optimized Harris hawk optimization algorithm. A target probability information graph model based on Gaussian distribution is constructed, which enhances the certainty of target existence probability in the environment through the establishment of a certainty information graph model. Furthermore, a digital information pheromone graph with attraction and repulsion mechanisms is used to guide UAVs to move towards unexplored areas, effectively reducing repetitive search behaviors and enhancing the efficiency of cooperative search. To address the issue of Harris hawk optimization algorithm being prone to local optima, a non-linear energy factor updating strategy is proposed, integrating the optimal individual positions and presenting a new position update formula. Finally, to search for the targets with randomly changing trajectories, a revisitable digital information graph and an adaptive target search gain function are designed to enhance the capability of UAVs to capture moving targets. Simulation results verify the effectiveness of the improved Harris hawk optimization algorithm in cooperative search for moving targets by multiple UAVs.
Ting LIU , Guoxin ZHOU , Yang XU , Delin LUO , Zhengyu GUO , Mengjie YANG . Optimised Harris hawks multi-UAV dynamic target search with fused infographics[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(S1) : 730773 -730773 . DOI: 10.7527/S1000-6893.2024.30773
1 | 段海滨, 梅宇, 赵彦杰, 等. 2023年无人机热点回眸[J]. 科技导报, 2024, 42(1): 217-231. |
DUAN H B, MEI Y, ZHAO Y J, et al. Review of technological hotspots of unmanned aerial vehicle in 2023[J]. Science & Technology Review, 2024, 42(1): 217-231 (in Chinese). | |
2 | LUO D L, SHAO J, XU Y, et al. Coevolution pigeon-inspired optimization with cooperation-competition mechanism for multi-UAV cooperative region search[J]. Applied Sciences, 2019, 9(5): 827. |
3 | 周贞文, 邵将, 徐扬, 等. 针对逃逸目标的多机协同围捕策略研究[J]. 空军工程大学学报(自然科学版), 2021, 22(03): 2-8. |
ZHOU Z W, SHAO J, XU Y, et al. Research on multi UAV cooperative round up strategy for escape targets[J]. Journal Of Air Force Engineering University (National Science Edition) 2021, 22(03): 2-8 (in Chinese). | |
4 | 赵明, 苏小红, 马培军, 等. 复杂多约束UAVs协同目标分配的一种统一建模方法[J]. 自动化学报, 2012, 38(12): 2038-2048. |
ZHAO M, SU X H, MA P J, et al. A unified modeling method of UAVs cooperative target assignment by complex multi-constraint conditions[J]. Acta Automatica Sinica, 2012, 38(12): 2038-2048 (in Chinese). | |
5 | 邓可, 连振江, 周德云, 等. 基于改进量子粒子群算法的多无人机任务分配[J]. 指挥控制与仿真, 2018, 40(5): 32-36. |
DENG K, LIAN Z J, ZHOU D Y, et al. Task allocation of multi-unmanned aerial vehicle based on improved quantum particle swarm optimization[J]. Command Control & Simulation, 2018, 40(5): 32-36 (in Chinese). | |
6 | 张方方, 陈波, 班旋旋, 等. 基于生物启发神经网络和DMPC的多机器人协同搜索算法[J]. 控制与决策, 2021, 36(11): 2699-2706. |
ZHANG F F, CHEN B, BAN X X, et al. Multi-robot cooperative search algorithm based on bio-inspired neural network and DMPC[J]. Control and Decision, 2021, 36(11): 2699-2706 (in Chinese). | |
7 | ZHU K, HAN B, ZHANG T. Multi-UAV distributed collaborative coverage for target search using heuristic strategy[J]. Guidance, Navigation and Control, 2021, 1(1): 2150002. |
8 | AIELLO G, VALAVANIS K P, RIZZO A. Fixed-wing UAV energy efficient 3D path planning in cluttered environments[J]. Journal of Intelligent & Robotic Systems, 2022, 105(3): 60. |
9 | BAUSO D, GIARRE L, PESENTI R. Multiple UAV cooperative path planning via neuro-dynamic programming[C]∥ 2004 43rd IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2004: 1087-1092. |
10 | PEHLIVANOGLU Y V, PEHLIVANOGLU P. An enhanced genetic algorithm for path planning of autonomous UAV in target coverage problems[J]. Applied Soft Computing, 2021, 112: 107796. |
11 | DUAN H B, ZHAO J X, DENG Y M, et al. Dynamic discrete pigeon-inspired optimization for multi-UAV cooperative search-attack mission planning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 706-720. |
12 | MOON S, OH E, SHIM D H. An integral framework of task assignment and path planning for multiple unmanned aerial vehicles in dynamic environments[J]. Journal of Intelligent & Robotic Systems, 2013, 70(1): 303-313. |
13 | WANG P Y, LIU Y L, YAO W M, et al. Improved A-star algorithm based on multivariate fusion heuristic function for autonomous driving path planning[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2023, 237(7): 1527-1542. |
14 | ZHANG Z, JIANG J, WU J, et al. Efficient and optimal penetration path planning for stealth unmanned aerial vehicle using minimal radar cross-section tactics and modified A-Star algorithm[J]. ISA Transactions, 2023, 134: 42-57. |
15 | XU L, CAO X B, DU W B, et al. Cooperative path planning optimization for multiple UAVs with communication constraints[J]. Knowledge-Based Systems, 2023, 260: 110164. |
16 | 郑伟铭, 周贞文, 徐扬, 等. 针对运动目标的多无人机协同鸽群优化搜索方法[J]. 控制理论与应用, 2023, 40(4): 624-632. |
ZHENG W M, ZHOU Z W, XU Y, et al. Multi-UAV cooperative pigeon-inspired optimization search method for moving targets[J]. Control Theory & Applications, 2023, 40(4): 624-632 (in Chinese). | |
17 | 周鹤翔, 徐扬, 罗德林. 针对动态目标的多无人机协同组合差分进化搜索方法[J]. 控制与决策, 2023, 38(11): 3128-3136. |
ZHOU H X, XU Y, LUO D L. A composite differential evolution algorithm for multi-UAV cooperative dynamic target search[J]. Control and Decision, 2023, 38(11): 3128-3136 (in Chinese). | |
18 | LIU H, LIN M, DENG L Y. UAV route planning for aerial photography under interval uncertainties[J]. Optik, 2016, 127(20): 9695-9700. |
19 | YU Y, LEE S. Efficient multi-UAV path planning for collaborative area search operations[J]. Applied Sciences, 2023, 13(15): 8728. |
20 | 戴健, 许菲, 陈琪锋. 多无人机协同搜索区域划分与路径规划[J]. 航空学报, 2020, 41(S1): 723770. |
DAI J, XU F, CHEN Q F. Multi-UAV cooperative search on region division and path planning[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S1): 723770 (in Chinese). | |
21 | 符小卫, 王辉, 徐哲. 基于DE-MADDPG的多无人机协同追捕策略[J]. 航空学报,2022, 43(05): 325311. |
FU X W, WANG H, XU Z. Cooperative pursuit strategy for multi-UAVs based on DE-MADDPG algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 325311 (in Chinese). | |
22 | YAN F, CHU J, HU J W, et al. Cooperative task allocation with simultaneous arrival and resource constraint for multi-UAV using a genetic algorithm[J]. Expert Systems with Applications, 2024, 245: 123023. |
23 | LI J, XIONG Y H, SHE J H. UAV path planning for target coverage task in dynamic environment[J]. IEEE Internet of Things Journal, 2023, 10(20): 17734-17745. |
24 | ZHANG W, ZHANG S, WU F Y, et al. Path planning of UAV based on improved adaptive grey wolf optimization algorithm[J]. IEEE Access, 2021, 9: 89400-89411. |
25 | 徐博, 张大龙. 基于量子行为鸽群优化的无人机紧密编队控制[J]. 航空学报, 2020, 41(8): 323722. |
XU B, ZHANG D L. Tight formation flight control of UAVs based on pigeon inspired algorithm optimization by quantum behavior[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(8): 323722 (in Chinese). | |
26 | 张新昱, 谢思宇, 陶洋, 等. 面向无人机空中加油紧密编队的鲁棒控制方法[J]. 航空学报, 2023, 44(20): 628425. |
ZHANG X Y, XIE S Y, TAO Y, et al. A robust control method for close formation of aerial-refueling UAVs[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 628425 (in Chinese). |
/
〈 |
|
〉 |