ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Recent advances in mechanical properties of fibre-reinforced composites with bio-inspired helicoidal lay-ups
Received date: 2023-12-15
Revised date: 2024-04-29
Accepted date: 2024-07-01
Online published: 2024-08-21
Supported by
National Natural Science Foundation of China(12402407);Beijing Nova Program(20230484287)
Fiber-reinforced composites with bio-inspired helicoidal lay-ups are a new type of composites inspired by the microstructure of biological exoskeletons and scales. The helicoidal lay-ups are able to significantly reduce the interlaminar stresses of transversely loaded composites by introducing small inter-ply angles, thus improving the interlaminar properties and impact resistance. This paper presents a state-of-the-art review of bio-inspired helicoidal composites, including bionics principles, typical configurations, fabrication methods, application prospects, and the current research advances in their static/dynamic mechanical properties. The static/dynamic mechanical responses and underlying enhancement mechanisms of bio-inspired helicoidal composites are systematically analyzed. It has been clarified that as a kind of emerging design method, stacking unidirectional laminates helicoidally with small interply angles results in improvements in stiffness, strength and toughness of fibre-reinforced composites compared with the traditional cross-ply or quasi-isotropic ones. By summarizing the shortcomings of the existing efforts, the future development trend of bio-inspired helicoidal composites is discussed. In a word, the concluding remarks raised in this paper are of great theoretical and practical significance for the design of high-performance fibre-reinforced composites.
Xin WANG , Haibo JI , Zhen LI , Bingyang LI , Qi ZHANG , Rui ZHANG , Xiang XU , Han MENG , Pengfei WANG , Tianjian LU . Recent advances in mechanical properties of fibre-reinforced composites with bio-inspired helicoidal lay-ups[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(19) : 29987 -029987 . DOI: 10.7527/S1000-6893.2024.29987
1 | 熊健, 李志彬, 刘惠彬, 等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6): 1629-1650. |
XIONG J, LI Z B, LIU H B, et al. Advances in aerospace lightweight composite shell structure[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1629-1650 (in Chinese). | |
2 | 冯志海, 李俊宁, 田跃龙, 等. 航天先进复合材料研究进展[J]. 复合材料学报, 2022, 39(9): 4187-4195. |
FENG Z H, LI J N, TIAN Y L, et al. Research progress of advanced composite materials for aerospace applications[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4187-4195 (in Chinese). | |
3 | 徐悦. 碳纤维复合材料的性能分析及其在航空领域的应用 [J]. 化学工程与装备, 2023(5): 200-202. |
XU Y. Performance analysis of carbon fiber composites and their application in aviation [J]. Chemical Engineering & Equipment, 2023(5): 200-202 (in Chinese). | |
4 | 黄亿洲, 王志瑾, 刘格菲. 碳纤维增强复合材料在航空航天领域的应用[J]. 西安航空学院学报, 2021, 39(5): 44-51. |
HUANG Y Z, WANG Z J, LIU G F. Application of carbon fiber reinforced composite in aerospace[J]. Journal of Xi’an Aeronautical University, 2021, 39(5): 44-51 (in Chinese). | |
5 | 慕琴琴, 燕群, 杭超, 等. 不同厚度及冲击角度对复合材料平板抗冲击能力的影响[J]. 实验力学, 2023, 38(1): 142-150. |
MU Q Q, YAN Q, HANG C, et al. Effect of different thickness and impact angel on the impact resistance of composite flat panels[J]. Journal of Experimental Mechanics, 2023, 38(1): 142-150 (in Chinese). | |
6 | 郑昊, 李岩, 涂昊昀. 短纤维插层碳纤维/环氧树脂复合材料层间性能[J]. 复合材料学报, 2022, 39(8): 3674-3683. |
ZHENG H, LI Y, TU H Y. Research on interlayer properties of short fiber intercalated carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3674-3683 (in Chinese). | |
7 | 刘晓军, 战丽, 邹爱玲, 等. 纤维增强复合材料层间增韧技术研究进展 [J]. 复合材料科学与工程, 2022 (1): 117-128. |
LIU X J, ZHAN L, ZHOU A L, et al. Research progress on interlaminar toughening technology of fiber reinforced composites [J]. Composites Science and Engineering, 2022 (1): 117-128 (in Chinese). | |
8 | GHAZLAN A, NGO T, TAN P, et al. Inspiration from Nature’s body armours-A review of biological and bioinspired composites[J]. Composites Part B: Engineering, 2021, 205: 108513. |
9 | PLOCHER J, MENCATTELLI L, NARDUCCI F, et al. Learning from nature: Bio-inspiration for damage-tolerant high-performance fibre-reinforced composites[J]. Composites Science and Technology, 2021, 208: 108669. |
10 | HUANG W, RESTREPO D, JUNG J Y, et al. Multiscale toughening mechanisms in biological materials and bioinspired designs[J]. Advanced Materials, 2019, 31(43): e1901561. |
11 | APICHATTRABRUT T, RAVI-CHANDAR K. Helicoidal composites[J]. Mechanics of Advanced Materials and Structures, 2006, 13(1): 61-76. |
12 | CHENG L, WANG L Y, KARLSSON A M. Mechanics-based analysis of selected features of the exoskeletal microstructure of Popillia japonica[J]. Journal of Materials Research, 2009, 24(11): 3253-3267. |
13 | BOULIGAND Y. Sur une architecture torsadée répandue dans de nombreuses cuticules d'Arthropodes [J]. CR Acad Sci, 1965, 261: 3665-3668. |
14 | RAABE D, SACHS C, ROMANO P. The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material[J]. Acta Materialia, 2005, 53(15): 4281-4292. |
15 | GRUNENFELDER L K, SUKSANGPANYA N, SALINAS C, et al. Bio-inspired impact-resistant composites[J]. Acta Biomaterialia, 2014, 10(9): 3997-4008. |
16 | RAABE D, ROMANO P, SACHS C, et al. Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue[J]. Journal of Crystal Growth, 2005, 283(1-2): 1-7. |
17 | SHARMA A, SHUKLA N K, BELARBI M O, et al. Bio-inspired nacre and helicoidal composites: From structure to mechanical applications[J]. Thin-Walled Structures, 2023, 192: 111146. |
18 | MEYERS M A, CHEN P Y, LIN A Y M, et al. Biological materials: Structure and mechanical properties[J]. Progress in Materials Science, 2008, 53(1): 1-206. |
19 | ZHAO S C, YIN X M, ZHANG D Y. A study of a bio-inspired impact resistant carbon fiber laminate with a sinusoidal helicoidal structure in the mandibles of trap-jaw ants[J]. Acta Biomaterialia, 2023, 169: 179-191. |
20 | YARAGHI N A, GUARíN-ZAPATA N, GRUNENFELDER L K, et al. A sinusoidally architected helicoidal biocomposite[J]. Advanced Materials, 2016, 28(32): 6835-6844. |
21 | HUANG W, SHISHEHBOR M, GUARíN-ZAPATA N, et al. A natural impact-resistant bicontinuous composite nanoparticle coating[J]. Nature Materials, 2020, 19: 1236-1243. |
22 | GRUNENFELDER L K, MILLIRON G, HERRERA S, et al. Ecologically driven ultrastructural and hydrodynamic designs in stomatopod cuticles[J]. Advanced Materials, 2018, 30(9): 1705295. |
23 | NALEWAY S E, TAYLOR J R A, PORTER M M, et al. Structure and mechanical properties of selected protective systems in marine organisms[J]. Materials Science and Engineering: C, 2016, 59: 1143-1167. |
24 | VERMA D, TOMAR V. Structural-nanomechanical property correlation of shallow water shrimp (Pandalus platyceros) exoskeleton at elevated temperature[J]. Journal of Bionic Engineering, 2014, 11(3): 360-370. |
25 | FABRITIUS H O, SACHS C, TRIGUERO P R, et al. Influence of structural principles on the mechanics of a biological fiber-based composite material with hierarchical organization: The exoskeleton of the lobster homarus americanus[J]. Advanced Materials, 2009, 21(4): 391-400. |
26 | CHENG L, WANG L Y, KARLSSON A M. Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior[J]. Journal of Materials Research, 2008, 23(11): 2854-2872. |
27 | RAABE D, ROMANO P, SACHS C, et al. Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus[J]. Materials Science and Engineering: A, 2006, 421(1-2): 143-153. |
28 | BOSSELMANN F, ROMANO P, FABRITIUS H, et al. The composition of the exoskeleton of two Crustacea: The American lobster Homarus americanus and the edible crab Cancer pagurus[J]. Thermochimica Acta, 2007, 463(1): 65-68. |
29 | CHEN P Y, LIN A Y M, MCKITTRICK J, et al. Structure and mechanical properties of crab exoskeletons[J]. Acta Biomaterialia, 2008, 4(3): 587-596. |
30 | CHEN B, PENG X, CAI C, et al. Helicoidal microstructure of Scarabaei cuticle and biomimetic research[J]. Materials Science and Engineering: A, 2006, 423(1-2): 237-242. |
31 | YIN S, YANG R H, HUANG Y, et al. Toughening mechanism of coelacanth-fish-inspired double-helicoidal composites[J]. Composites Science and Technology, 2021, 205: 108650. |
32 | ZIMMERMANN E A, GLUDOVATZ B, SCHAIBLE E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour[J]. Nature Communications, 2013, 4: 2634. |
33 | PATEK S N, CALDWELL R L. Extreme impact and cavitation forces of a biological hammer: Strike forces of the peacock mantis shrimp Odontodactylus scyllarus[J]. The Journal of Experimental Biology, 2005, 208(Pt 19): 3655-3664. |
34 | WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer[J]. Science, 2012, 336(6086): 1275-1280. |
35 | MOHAMED S A, MOHAMED N, ELTAHER M A. Bending, buckling and linear vibration of bio-inspired composite plates[J]. Ocean Engineering, 2022, 259: 111851. |
36 | GUO C, HE J. Multi-scale concurrent analysis for bio-inspired helicoidal CFRP laminates and experimental investigation[J]. Composite Structures, 2022, 296: 115886. |
37 | YIN S, CHEN H Y, YANG R H, et al. Tough nature-inspired helicoidal composites with printing-induced voids[J]. Cell Reports Physical Science, 2020, 1: 100109. |
38 | LIU J L, LEE H P, TAN V B C. Effects of inter-ply angles on the failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 165: 282-289. |
39 | LIU J L, LEE H P, LAI K S, et al. Bio-inspired laminates of different material systems[J]. Journal of Applied Mechanics, 2020, 87(3): 031007. |
40 | RIVERA J, YARAGHI N A, HUANG W, et al. Modulation of impact energy dissipation in biomimetic helicoidal composites[J]. Journal of Materials Research and Technology, 2020, 9(6): 14619-14629. |
41 | PINTO F, IERVOLINO O, SCARSELLI G, et al. Bioinspired twisted composites based on Bouligand structures[C]∥ Bioinspiration, biomimetics, and bioreplication 2016. SPIE, 2016. |
42 | CHENG L, THOMAS A, GLANCEY J L, et al. Mechanical behavior of bio-inspired laminated composites[J]. Composites Part A: Applied Science and Manufacturing, 2011, 42(2): 211-220. |
43 | JIANG H Y, REN Y R, LIU Z H, et al. Low-velocity impact resistance behaviors of bio-inspired helicoidal composite laminates with non-linear rotation angle based layups[J]. Composite Structures, 2019, 214: 463-475. |
44 | DHARI R S, PATEL N P, WANG H X, et al. Numerical investigation of Fibonacci series based bio-inspired laminates under impact loading[J]. Composite Structures, 2021, 255: 112985. |
45 | LIU J L, LEE H P, TAN V B C. Failure mechanisms in bioinspired helicoidal laminates[J]. Composites Science and Technology, 2018, 157: 99-106. |
46 | ZHANG X Y, LUAN Y B, LI Y C, et al. Bioinspired design of lightweight laminated structural materials and the intralayer/interlayer strengthening and toughening mechanisms induced by the helical structure[J]. Composite Structures, 2021, 276: 114575. |
47 | 阿拉腾沙嘎, 蒋禅, 胡嘉起. 仿生螺旋结构复合材料研究进展[J]. 化工新型材料, 2022, 50(11): 1-4. |
ALATENG S, JIANG S, HU J Q. Research progress in biomimetic spiral structure composites[J]. New Chemical Materials, 2022, 50(11): 1-4 (in Chinese). | |
48 | NING H B, FLATER P, GASKEY B, et al. Failure mechanisms of 3D printed continuous fiber reinforced thermoplastic composites with complex fiber configurations under impact[J]. Progress in Additive Manufacturing, 2024, 9(4): 753-766. |
49 | 何亚飞, 矫维成, 杨帆, 等. 树脂基复合材料成型工艺的发展[J]. 纤维复合材料, 2011, 28(2): 7-13. |
HE Y F, JIAO W C, YANG F, et al. The development of polymer composites forming process[J]. Fiber Composites, 2011, 28(2): 7-13 (in Chinese). | |
50 | AKHOUNDI B, BEHRAVESH A H, BAGHERI SAED A. Improving mechanical properties of continuous fiber-reinforced thermoplastic composites produced by FDM 3D printer[J]. Journal of Reinforced Plastics and Composites, 2019, 38(3): 99-116. |
51 | 李岩, 龙昱, 郝潞岑, 等. 3D打印纤维增强复合材料力学性能研究进展[J]. 力学季刊, 2022, 43(4): 731-750. |
LI Y, LONG Y, HAO L C, et al. Recent advances in the mechanical properties of 3D printed fiber-reinforced composites[J]. Chinese Quarterly of Mechanics, 2022, 43(4): 731-750 (in Chinese). | |
52 | OUYANG W, GONG B W, WANG H, et al. Identifying optimal rotating pitch angles in composites with Bouligand structure[J]. Composites Communications, 2021, 23: 100602. |
53 | RIBBANS B, LI Y J, TAN T. A bioinspired study on the interlaminar shear resistance of helicoidal fiber structures[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 56: 57-67. |
54 | YANG F, YI F J, XIE W H. The role of ply angle in interlaminar delamination properties of CFRP laminates[J]. Mechanics of Materials, 2021, 160: 103928. |
55 | ZAHERI A, FENNER J S, RUSSELL B P, et al. Revealing the mechanics of helicoidal composites through additive manufacturing and beetle developmental stage analysis[J]. Advanced Functional Materials, 2018, 28(33): 1803073. |
56 | LEREW D, FLATER P, GASKEY B, et al. Mechanical behavior of bio-inspired helicoidal thermoplastic composites[J]. Journal of Thermoplastic Composite Materials, 2024, 37(3): 1094-1110. |
57 | MEO M, RIZZO F, PORTUS M, et al. Bioinspired helicoidal composite structure featuring functionally graded variable ply pitch[J]. Materials, 2021, 14(18): 5133. |
58 | MOHAMED S A, MOHAMED N, ABO-BAKR R M, et al. Multi-objective optimization of snap-through instability of helicoidal composite imperfect beams using Bernstein polynomials method[J]. Applied Mathematical Modelling, 2023, 120: 301-329. |
59 | MORIKAWA K, YAHIRO H, MATSUMOTO T. Visual examination of flexural cracking behaviors in a helicoidally laminated composite[J]. Procedia Engineering, 2017, 171: 1301-1307. |
60 | NWAMBU C N, ROBERT C, ALAM P. Viscoelastic properties of bioinspired asymmetric helicoidal CFRP composites[J]. MRS Advances, 2022, 7(31): 805-810. |
61 | SHI M D, HAN Z W, HAN Q G, et al. Research on the mechanical and water-repellent properties of bionic carbon fiber reinforced plastic composites inspired by coelacanth scale and lotus leaf[J]. Composites Science and Technology, 2022, 226: 109542. |
62 | WANG K, WU X D, AN L H, et al. Crack modes and toughening mechanism of a bioinspired helicoidal recursive composite with nonlinear recursive rotation angle-based layups[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 142: 105866. |
63 | YANG R H, WANG H T, WANG B, et al. Sinusoidally architected helicoidal composites inspired by the dactyl club of mantis shrimp[J]. International Journal of Smart and Nano Materials, 2023, 14(3): 321-336. |
64 | SHANG J S, NGERN N H H, TAN V B C. Crustacean-inspired helicoidal laminates[J]. Composites Science and Technology, 2016, 128: 222-232. |
65 | PARUTHI S, SHARMA N, GULIA R, et al. Thermal-based free vibration and buckling behavior of bio-inspired cross- and double-helicoidal/bouligand laminated composite plates[J]. Acta Mechanica Solida Sinica, 2023, 36(6): 933-942. |
66 | LU T Y, SHEN H S, WANG H, et al. Optimization design and secondary buckling of bio-inspired helicoidal laminated plates under thermomechanical loads[J]. Composite Structures, 2023, 321: 117344. |
67 | LUO H Y, WANG H S, ZHAO Z Y, et al. Experimental and numerical investigation on the failure behavior of Bouligand laminates under off-axis open-hole tensile loading[J]. Composite Structures, 2023, 313: 116932. |
68 | VILLARRAGA J, BUSTAMANTE GóEZ L M, ZAVATTIERI P. Fiber angle influence and toughness characterization of bioinspired discontinuous fiber helicoids composite materials produced via additive manufacturing[J]. Revista EIA, 2023, 20(40): 1-15. |
69 | NWAMBU C, ROBERT C, ALAM P. The tensile behaviour of unaged and hygrothermally aged asymmetric helicoidally stacked CFRP composites[J]. Journal of Composites Science, 2022, 6(5): 137. |
70 | NWAMBU C, ROBERT C, ALAM P. Tensile behaviour of unaged and hygrothermally aged discontinuous Bouligand structured CFRP composites[J]. Oxford Open Materials Science, 2023, 3(1): itac016. |
71 | DELAUNOIS Y, TITS A, GROSSMAN Q, et al. Design strategies of the mantis shrimp spike: How the crustacean cuticle became a remarkable biological harpoon[J]. Natural Sciences, 2023, 3(3): e20220060. |
72 | LI W H, HUANG W Z, XIONG Y, et al. Failure mechanism and heat treatment effect of 3D-printed bio-inspired helicoidal CF/PEEK composites[J]. Composites Communications, 2023, 37: 101464. |
73 | SHARMA A, BELARBI M O, GARG A, et al. Bending analysis of bio-inspired helicoidal/Bouligand laminated composite plates[J]. Mechanics of Advanced Materials and Structures, 2023: 1-15. |
74 | HAN Q G, CHEN S T, WANG J H, et al. Biomimetic laminated basalt fiber-reinforced composite with sinusoidally architected helicoidal structure integrating superior mechanical properties and microwave-transmissibility[J]. Composites Science and Technology, 2023, 231: 109836. |
75 | HAN Q G, QIN H L, LIU Z H, et al. Experimental investigation on impact and bending properties of a novel dactyl-inspired sandwich honeycomb with carbon fiber[J]. Construction and Building Materials, 2020, 253: 119161. |
76 | SUKSANGPANYA N, YARAGHI N A, KISAILUS D, et al. Twisting cracks in Bouligand structures[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76: 38-57. |
77 | SUKSANGPANYA N, YARAGHI N A, PIPES R B, et al. Crack twisting and toughening strategies in Bouligand architectures[J]. International Journal of Solids and Structures, 2018, 150: 83-106. |
78 | YANG F, XIE W H, MENG S H. Crack-driving force and toughening mechanism in crustacean-inspired helicoidal structures[J]. International Journal of Solids and Structures, 2021, 208-209: 107-118. |
79 | MENCATTELLI L, PINHO S T. Ultra-thin-ply CFRP Bouligand bio-inspired structures with enhanced load-bearing capacity, delayed catastrophic failure and high energy dissipation capability[J]. Composites Part A: Applied Science and Manufacturing, 2020, 129: 105655. |
80 | WU K J, SONG Z Q, ZHANG S S, et al. Discontinuous fibrous Bouligand architecture enabling formidable fracture resistance with crack orientation insensitivity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(27): 15465-15472. |
81 | LIU J L, MENCATTELLI L, ZHI J, et al. Lightweight, fiber-damage-resistant, and healable bio-inspired glass-fiber reinforced polymer laminate[J]. Polymers, 2022, 14(3): 475. |
82 | HE J, GUO C, LI W K. Understanding the helicoidal damage behavior of bio-inspired laminates by conducting multiscale concurrent simulation and experimental analysis[J]. Composite Structures, 2023, 314: 116972. |
83 | LIU J L, LEE H P, KONG S H R, et al. Improving laminates through non-uniform inter-ply angles[J]. Composites Part A: Applied Science and Manufacturing, 2019, 127: 105625. |
84 | ZHANG X F, YUAN Y N. Bioinspired hybrid helical structure in lobster Homarus Americanus: Enhancing penetration resistance and protective performance[J]. Composites Part A: Applied Science and Manufacturing, 2024, 177: 107927. |
85 | LIU J L, LEE H P, TAY T E, et al. Healable bio-inspired helicoidal laminates[J]. Composites Part A: Applied Science and Manufacturing, 2020, 137: 106024. |
86 | CHEW E, LIU J L, TAY T E, et al. Improving the mechanical properties of natural fibre reinforced laminates composites through Biomimicry[J]. Composite Structures, 2021, 258: 113208. |
87 | GARG A, BELARBI M O, CHALAK H D, et al. Buckling and free vibration analysis of bio-inspired laminated sandwich plates with helicoidal/Bouligand face sheets containing softcore[J]. Ocean Engineering, 2023, 270: 113684. |
88 | LIAN X, ZHANG W D, MAO Y M, et al. Buckling optimization of curved grid-stiffened helicoidal composite panel including the factor of mode shape in multiple load cases[J]. Composite Structures, 2023, 322: 117383. |
89 | LU X C, ZHANG X M, LI Y B, et al. Enhanced low-velocity impact resistance of helicoidal composites by fused filament fabrication (FFF)[J]. Polymers, 2022, 14(7): 1440. |
90 | LIU J L, SINGH A K, LEE H P, et al. The response of bio-inspired helicoidal laminates to small projectile impact[J]. International Journal of Impact Engineering, 2020, 142: 103608. |
91 | KAZEMI M E, MEDEAU V, GREENHALGH E, et al. Bio-inspired interleaved hybrids: Novel solutions for improving the high-velocity impact response of carbon fibre-reinforced polymers (CFRP)[J]. Composites Part B: Engineering, 2023, 264: 110930. |
92 | GARG A, BELARBI M O, LI L, et al. Free vibration analysis of bio-inspired helicoid laminated composite plates[J]. The Journal of Strain Analysis for Engineering Design, 2023, 58(7): 538-548. |
93 | LU T Y, SHEN H S, WANG H, et al. Linear and nonlinear free vibration and optimal design of bio-inspired helicoidal CFRPC laminated plates[J]. International Journal of Structural Stability and Dynamics, 2024, 24(9): 2450098. |
94 | OUYANG W, WANG H, DONG J L, et al. Cross-helicoidal approach to the design of damage-resistant composites[J]. Composite Structures, 2023, 306: 116577. |
95 | 韩登安, 徐丹, 叶仁传, 等. 冰雹载荷下基于碳纤维增强复合材料的腔棘鱼鳞双螺旋仿生结构的撞击损伤分析[J]. 高压物理学报, 2022, 36(4): 164-172. |
HAN D A, XU D, YE R C, et al. Analysis on damage of double-helicoidal carbon fiber reinforced polymer bionic structure inspired by coelacanth scales under hail load[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 164-172 (in Chinese). | |
96 | WANG C Z, SU D D, XIE Z F, et al. Dynamic behaviour of Bio-inspired heterocyclic aramid fibre-reinforced laminates subjected to low-velocity drop-weight impact[J]. Composites Part A: Applied Science and Manufacturing, 2022, 153: 106733. |
97 | YANG F, XIE W H, MENG S H. Impact and blast performance enhancement in bio-inspired helicoidal structures: A numerical study[J]. Journal of the Mechanics and Physics of Solids, 2020, 142: 104025. |
98 | ZHAO S C, ZHANG D Y, YAN Y P, et al. Investigation of bionic composite laminates inspired by the natural impact-resistant helicoidal structure in the mandibles of trap-jaw ants[J]. Bioinspiration & Biomimetics, 2023, 18(5): 056005. |
99 | DENG Y B, JIANG H Y, REN Y R. Low-velocity impact resistance behaviors of bionic double-helicoidal composite laminates[J]. International Journal of Mechanical Sciences, 2023, 248: 108248. |
100 | MENCATTELLI L, PINHO S T. Realising bio-inspired impact damage-tolerant thin-ply CFRP Bouligand structures via promoting diffused sub-critical helicoidal damage[J]. Composites Science and Technology, 2019, 182: 107684. |
101 | GINZBURG D, PINTO F, IERVOLINO O, et al. Damage tolerance of bio-inspired helicoidal composites under low velocity impact[J]. Composite Structures, 2017, 161: 187-203. |
102 | WANG Z, LUO Q T, LI Q, et al. Design optimization of bioinspired helicoidal CFRPP/GFRPP hybrid composites for multiple low-velocity impact loads[J]. International Journal of Mechanical Sciences, 2022, 219: 107064. |
103 | GE X X, ZHANG P, ZHAO F, et al. Experimental and numerical investigations on the dynamic response of woven carbon fiber reinforced thick composite laminates under low-velocity impact[J]. Composite Structures, 2022, 279: 114792. |
104 | YANG F, XIE W H, MENG S H. Global sensitivity analysis of low-velocity impact response of bio-inspired helicoidal laminates[J]. International Journal of Mechanical Sciences, 2020, 187: 106110. |
105 | LIU J L, PHAM V N H, TAY T E, et al. Bio-inspired helicoidal thin-ply carbon fiber reinforced epoxy laminates with nylon microparticles for improved toughness and healing[J]. Composites Part A: Applied Science and Manufacturing, 2023, 171: 107588. |
106 | ABIR M R, TAY T E, LEE H P. On the improved ballistic performance of bio-inspired composites[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 59-70. |
107 | WANG H X, WANG C Z, HAZELL P J, et al. Insights into the high-velocity impact behaviour of bio-inspired composite laminates with helicoidal lay-ups[J]. Polymer Testing, 2021, 103: 107348. |
108 | KARTHIKEYAN K, KAZEMAHVAZI S, RUSSELL B P. Optimal fibre architecture of soft-matrix ballistic laminates[J]. International Journal of Impact Engineering, 2016, 88: 227-237. |
/
〈 |
|
〉 |