Articles

Reentry target tracking algorithm based on improved “current” statistical model

  • Yangchao HE ,
  • Jiong LI ,
  • Lei SHAO ,
  • Xiangwei BU ,
  • Jinlin ZHANG ,
  • Boyang JI
Expand
  • Air and Missile Defense College,Air Force Engineering University,Xi’an 710051,China

Received date: 2024-06-05

  Revised date: 2024-06-24

  Accepted date: 2024-08-01

  Online published: 2024-08-20

Supported by

National Natural Science Foundation of China(62173339)

Abstract

When tracking re-entry targets, the “Current” Statistical Model typically presets the acceleration variance limit based on experience. However, mismatches between this preset value and the target’s actual motion can result in significant tracking errors. To overcome this issue, this paper introduces an enhancement of the conventional acceleration variance adaptive algorithm tailored specifically for reentry targets. The acceleration increment derived from the target state filter value and its predicted counterpart is scaled, enabling the algorithm’s acceleration variance to dynamically adjust to the varying maneuvering intensity of the reentry target. The scaling coefficients for distinct maneuvering modes within this algorithm are optimized using the particle swarm optimization algorithm, which minimizes an objective function comprising both the root mean square error and the mean value. Simulation results demonstrate that the proposed algorithm can stably track the state values of reentry targets in typical maneuvering modes, exhibiting higher tracking accuracy compared to other algorithms.

Cite this article

Yangchao HE , Jiong LI , Lei SHAO , Xiangwei BU , Jinlin ZHANG , Boyang JI . Reentry target tracking algorithm based on improved “current” statistical model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(S1) : 730800 -730800 . DOI: 10.7527/S1000-6893.2024.30800

References

1 张灿, 王轶鹏, 叶蕾. 国外近十年高超声速飞行器技术发展综述[J]. 战术导弹技术2020(6): 81-86.
  ZHANG C, WANG Y P, YE L. Summary of the technological development of overseas hypersonics in the past ten years[J]. Tactical Missile Technology2020(6): 81-86 (in Chinese).
2 雷虎民, 骆长鑫, 周池军, 等. 临近空间防御作战拦截弹制导与控制关键技术综述[J]. 航空兵器202128(2): 1-10.
  LEI H M, LUO C X, ZHOU C J, et al. Summary of key technologies of interceptor guidance and control in near space defense operations[J]. Aero Weaponry202128(2): 1-10 (in Chinese).
3 LI X R, JILKOV V P. Survey of maneuvering target tracking. part II: Motion models of ballistic and space targets[J]. IEEE Transactions on Aerospace and Electronic Systems201046(1): 96-119.
4 李世杰, 雷虎民, 周池军, 等. 基于控制变量估计的高超声速再入滑翔目标轨迹预测算法[J]. 系统工程与电子技术202042(10): 2320-2327.
  LI S J, LEI H M, ZHOU C J, et al. An intelligent trajectory prediction algorithm of reentry glide target based on control parameter estimation[J]. Systems Engineering and Electronics202042(10): 2320-2327 (in Chinese).
5 魏喜庆, 顾龙飞, 李瑞康, 等. 基于Singer模型的高超声速飞行器轨迹跟踪与预测[J]. 航天控制201735(4): 62-66, 72.
  WEI X Q, GU L F, LI R K, et al. Trajectory tracking and prediction of hypersonic vehicle based on singer model[J]. Aerospace Control201735(4): 62-66, 72 (in Chinese).
6 凡永华, 皇甫逸伦, 郭晓雯, 等. 拦截临近空间滑翔目标的衰减记忆滤波中制导方法[J]. 系统仿真学报202133(11): 2742-2752.
  FAN Y H, HUANGFU Y L, GUO X W, et al. Midcourse guidance method based on fading memory filter for intercepting near-space gliding target[J]. Journal of System Simulation202133(11): 2742-2752 (in Chinese).
7 张君彪, 熊家军, 兰旭辉, 等. 基于自适应滤波的高超声速滑翔目标三维跟踪算法[J]. 系统工程与电子技术202244(2): 628-636.
  ZHANG J B, XIONG J J, LAN X H, et al. 3D tracking algorithm of hypersonic gliding target based on adaptive filtering[J]. Systems Engineering and Electronics202244(2): 628-636 (in Chinese).
8 翟岱亮, 雷虎民, 李炯, 等. 基于自适应IMM的高超声速飞行器轨迹预测[J]. 航空学报201637(11): 3466-3475.
  ZHAI D L, LEI H M, LI J, et al. Trajectory prediction of hypersonic vehicle based on adaptive IMM[J]. Acta Aeronautica et Astronautica Sinica201637(11): 3466-3475 (in Chinese).
9 MAZOR E, AVERBUCH A, BAR-SHALOM Y, et al. Interacting multiple model methods in target tracking: A survey[J]. IEEE Transactions on Aerospace and Electronic Systems199834(1): 103-123.
10 邵雷, 雷虎民, 赵锦. 临近空间高超声速飞行器轨迹预测方法研究进展[J]. 航空兵器202128(2): 34-39.
  SHAO L, LEI H M, ZHAO J. Research progress in trajectory prediction for near space hypersonic vehicle[J]. Aero Weaponry202128(2): 34-39 (in Chinese).
11 周池军, 邵雷, 骆长鑫, 等. 高动态目标拦截弹制导与控制前沿技术展望[J]. 空天技术2022, (2): 61-74.
  ZHOU C J, SHAO L, LUO C X, et al. Prospect on advanced technology of interceptor guidance and control in high dynamic target defense[J]. Aerospace Technology2022, (2): 61-74 (in Chinese).
12 SINGER R A. Estimating optimal tracking filter performance for manned maneuvering targets[J]. IEEE Transactions on Aerospace and Electronic Systems1970, AES-6(4): 473-483.
13 周宏仁. 机动目标“当前”统计模型与自适应跟踪算法[J]. 航空学报19834(1): 73-86.
  ZHOU H R. A “Current” statistical model and adaptive tracking algorithm for maneuvering targets[J]. Acta Aeronautica et Astronautica Sinica19834(1): 73-86 (in Chinese).
14 刘昌云, 刘进忙, 陈长兴, 等. 机动目标跟踪的机动频率自适应算法[J]. 控制理论与应用200421(6): 961-965.
  LIU C Y, LIU J M, CHEN C X, et al. Maneuvering frequency adaptive algorithm of tracking a maneuvering object[J]. Control Theory & Applications200421(6): 961-965 (in Chinese).
15 钱广华, 李颖, 骆荣剑. 机动目标跟踪中一种机动频率和方差自适应滤波算法[J]. 雷达学报20132(2): 257-264.
  QIAN G H, LI Y, LUO R J. One maneuvering frequency and the variance adaptive filtering algorithm for maneuvering target tracking[J]. Journal of Radars20132(2): 257-264 (in Chinese).
16 方前学, 杨建文. 基于参数自适应CS模型的机动目标跟踪算法[J]. 火力指挥与控制201641(9): 90-94.
  FAGN Q X, YANG J W. A maneuvering target tracking algorithm based on parameter adaptive current statistical model[J]. Fire Control & Command Control201641(9): 90-94 (in Chinese).
17 王博, 贺正洪, 周政, 等. 一种改进的当前统计模型自适应跟踪算法[J]. 现代防御技术201644(5): 34-39.
  WANG B, HE Z H, ZHOU Z, et al. Improved adaptive current statistical model tracking algorithm[J]. Modern Defence Technology201644(5): 34-39 (in Chinese).
18 MARINI F, WALCZAK B. Particle swarm optimization (PSO). A tutorial[J]. Chemometrics and Intelligent Laboratory Systems2015149: 153-165.
19 JAIN M, SAIHJPAL V, SINGH N, et al. An overview of variants and advancements of PSO algorithm[J]. Applied Sciences202212(17): 8392.
20 PHILLIPS, TERRY H. A common aero vehicle (CAV) model, description, and employment Guide[R]. Schafer Corporation for AFRL and AFSPC, 2003.
21 李明杰, 周池军, 雷虎民, 等. 基于控制参数估计的再入滑翔目标智能轨迹预测算法[J]. 系统工程与电子技术202345: 221-233.
  LI M J, ZHOU C J, LEI H M, et al. An intelligent trajectory prediction algorithm of reentry glide target based on control parameter estimation[J]. Systems Engineering and Electronics202345: 221-233 (in Chinese).
22 周宏仁. 机动目标跟踪[M]. 北京: 国防工业出版社, 1991.
  ZHOU H R. Tracking of maneuvering targets[M]. Beijing: National Defense Industry Press, 1991 (in Chinese).
Outlines

/