ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Homotopic perturbed lambert algorithm based on A* algorithm
Received date: 2024-06-04
Revised date: 2024-07-03
Accepted date: 2024-08-05
Online published: 2024-08-20
Supported by
National Natural Science Foundation of China(12372052);Natural Science Foundation of Hunan Province(2023JJ20047);the Young Ellite Scientists Sponsorslip Program(2021-JCJQ-QT-047)
Perturbed Lambert Problem forms the fundamental basis for tasks such as spacecraft rendezvous and on-orbit servicing. Due to the lack of an analytical solution for the perturbed Lambert problem, numerical solutions can only be obtained through iterative computations. Consequently, existing methods primarily focus on improving iteration convergence and computational efficiency. Building upon current homotopic iteration methods, this paper introduces the general concept of the A* algorithm for graph search and proposes a pruned homotopic iteration approach. Firstly, by combining the gradient direction of the state transition matrix from the terminal position error to the initial velocity increment with the target direction, an iteration direction is derived, and a homotopic mapping based on the A* algorithm is designed. Secondly, utilizing Taylor expansion, a linear perturbation matrix is devised, enabling pruning of divergent end-position paths. This addresses the issue of ineffective iterations due to initial velocity divergence that conventional methods such as Newton’s shooting method and quasi-linearization fail to exclude. Simulation results demonstrate that while ensuring the attainment of optimal solutions, our proposed method improves computational efficiency by over 25%, compared to existing homotopic methods, featuring a broader convergence range. Moreover, the method exhibits favorable characteristics regarding initial value convergence. In the case of orbit transfer in the Earth-Moon three-body system, it achieves more than a 30% increase in computational efficiency compared to quasi-linearization techniques.
Cong XIE , Zhen YANG , Yangang LIANG . Homotopic perturbed lambert algorithm based on A* algorithm[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(4) : 330780 -330780 . DOI: 10.7527/S1000-6893.2024.30780
1 | 张洪波, 郑伟, 汤国建. 采用打靶法设计考虑地球扁率的机动轨道[J]. 宇航学报, 2008, 29(4): 1177-1181. |
ZHANG H B, ZHENG W, TANG G J. Maneuver trajectory design with J2Correction based on shooting procedure[J]. Journal of Astronautics, 2008, 29(4): 1177-1181 (in Chinese). | |
2 | 冯浩阳, 汪雪川, 岳晓奎, 王昌涛. 航天器轨道递推及Lambert 问题计算方法综述[J]. 航空学报, 2023, 44(13): 028027. |
FENG H Y, WANG X C, YUE X K, et al. A survey of computational methods for spacecraft orbit propagation and Lambert problems[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 028027 (in Chinese). | |
3 | KELLER H B. Numerical solution of two point boundary value problems[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1976: 15-19. |
4 | LEE E S. Quasilinearization and invariant imbedding, with applications to chemical engineering and adaptive control[M]. New York: Academic Press, 1968:30-35. |
5 | REINHARDT H J. Analysis of approximation methods for differential and integral equations[M]. New York: Springer New York, 1985:10-15. |
6 | YANG Z, LUO Y Z, ZHANG J, et al. Homotopic perturbed lambert algorithm for long-duration rendezvous optimization[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(11): 2215-2223. |
7 | CHARTIER P, PHILIPPE B. A parallel shooting technique for solving dissipative ODE’s[J]. Computing, 1993, 51(3): 209-236. |
8 | 伍佩钰. 非线性方程组的非精确Broyden方法[D]. 长沙: 长沙理工大学, 2017: 1-10. |
WU P Y. Inexact Broyden method for nonlinear equations[D]. Changsha: Changsha University of Science & Technology, 2017: 1-10. (in Chinese). | |
9 | 张雷, 曾蓉, 陈聆. 非线性最优控制计算方法及其应用[M]. 北京: 科学出版社, 2015: 116-128. |
ZHANG L, ZENG R, CHEN L. Calculation method of nonlinear optimal control and its application[M]. Beijing: Science Press, 2015: 116-128 (in Chinese). | |
10 | 彭坤, 彭睿, 黄震 等. 求解最优月球软着陆的隐式打靶法[J]. 宇航学报, 2019, 40(7): 322-641. |
PENG K, PENG R, HUANG Z, et al. Implicit shooting method to solve optimal lunar soft landing trajectory[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 322-641 (in Chinese). | |
11 | 崔文豪. J2摄动下的卫星编队队形重构与队形保持方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019: 27-34. |
CUI W H. Research on formation reconstruction and formation maintenance of satellite formation under J2 perturbation[D].Harbin: Harbin Engineering University, 2019: 27-34. (in Chinese). | |
12 | FITZGERALD R M. Counting lambert’s problem solutions in the circular-restricted three-body problem: AIAA-2024-0204[R]. Reston: AIAA, 2024. |
13 | 张哲, 代洪华, 冯浩阳, 等. 初值约束与两点边值约束轨道动力学方程的快速数值计算方法[J]. 力学学报, 2022, 54(2): 503-516. |
ZHANG Z, DAI H H, FENG H Y, et al. Efficient numerical method for orbit dynamic functions with initial value and two-point boundary-value constraints[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(2): 503-516 (in Chinese). | |
14 | 冯浩阳, 岳晓奎, 汪雪川. 大范围收敛的摄动Lambert问题新型解法: 拟线性化-局部变分迭代法[J]. 航空学报, 2021, 42(11): 524699. |
FENG H Y, YUE X K, WANG X C. A novel quasi linearization-local variational iteration method with large convergence domain for solving perturbed Lambert’s problem[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524699 (in Chinese). | |
15 | WAWRZYNIAK G G, HOWELL K C. Generating solar sail trajectories in the Earth-Moon system using augmented finite-difference methods[J]. International Journal of Aerospace Engineering, 2011, 2011: 476197. |
16 | WATSON L T. Globally convergent homotopy algorithms for nonlinear systems of equations[J]. Nonlinear Dynamics, 1990, 1(2): 143-191. |
17 | LIU C S, YEIH W, KUO C L, et al. A scalar homotopy method for solving an Over/Under-determined system of non-linear algebraic equations[J]. CMES-Computer Modeling in Engineering and Sciences, 2009, 53(1): 47-71. |
18 | ARMELLIN R, GONDELACH D, JUAN J F SAN. Multiple revolution perturbed lambert problem solvers[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(9): 2019-2032. |
19 | 郭铁丁. 深空探测小推力轨迹优化的间接法与伪谱法研究[D]. 北京: 清华大学, 2012: 20-21. |
GUO T D. Research on indirect method and pseudo-spectral method for small thrust trajectory optimization in deep space exploration[D].Beijing: Tsinghua University, 2012: 20-21. (in Chinese). | |
20 | PAN X, PAN B F. Practical homotopy methods for finding the best minimum-fuel transfer in the circular restricted three-body problem[J]. IEEE Access, 2020, 8: 47845-47862. |
21 | 潘迅, 泮斌峰. 基于同伦方法三体问题小推力推进转移轨道设计[J]. 深空探测学报, 2017, 4(3): 270-275. |
PAN X, PAN B F. Optimization of low-thrust transfers using homotopic method in the restricted three-body problem[J]. Journal of Deep Space Exploration, 2017, 4(3): 270-275 (in Chinese). | |
22 | HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. |
23 | 杨震, 罗亚中, 张进 等. 基于状态转移张量的非线性轨道偏差演化分析方法[C]∥中国非线性动力学与运动稳定性大会. 南京: 中国振动工程会, 2015. |
YANG Z, LUO Y Z, ZHANG J. Nonlinear orbit deviation evolution analysis method based on state transition tensor[C]∥China Conference on nonlinear Dynamics and Motion Stability. Nanjing: Chinese Society for Vibration Engineering, 2015 (in Chinese). | |
24 | VINTI J P. Orbital and Celestial Mechanics[M]. Reston,: AIAA, 1998: 100-105. |
25 | 赵育善, 师鹏, 张晨. 深空飞行动力学[M]. 北京: 中国宇航出版社, 2016: 155-165. |
ZHAO Y S, SHI P, ZHANG C. Deep space flight dynamics[M]. Beijing: Chinese Astronautic Press, 2016: 155-165 (in Chinese). |
/
〈 |
|
〉 |