Electronics and Electrical Engineering and Control

Lifespan prediction of hydrogen fuel cell based on decomposition optimization parallel ESN

  • Zhiguang HUA ,
  • Shiyuan PAN ,
  • Dongdong ZHAO ,
  • Xianglong LI ,
  • Manfeng DOU
Expand
  • 1.School of Automation,Northwestern Polytechnical University,Xi’an 710129,China
    2.School of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China

Received date: 2024-05-17

  Revised date: 2024-06-11

  Accepted date: 2024-07-24

  Online published: 2024-08-20

Supported by

National Natural Science Foundation of China(52307251);China Postdoctoral Science Foundation(2023TQ0277)

Abstract

Aiming at the problem of low voltage prediction accuracy caused by multi-time-scale aging characteristics of Proton Exchange Membrane Fuel Cell (PEMFC), a Parallel Echo State Network (PESN) structure which based on Ensemble Empirical Mode Decomposition (EEMD) and Circulatory System based Optimization (CSBO) is proposed to improve the lifespan prediction accuracy of PEMFC. By utilizing EEMD to conduct modal decomposition on the original voltage signal, the historical data from various time points and the decomposed signals with distinct frequencies are taken as the parallel inputs for the different sub-reservoirs of ESN, thereby establishing a parallel ESN structure that allocates and superimposes outputs based on weights. The CSBO is then leveraged to optimize the relevant parameters of the parallel ESN structure. Subsequently, utilizing the optimized EPESN model, the prediction of the output voltage of PEMFC for the next several hundred hours is achieved. Specifically, under the steady-state and quasi-dynamic data training sets at 70%, the Root Mean Square Error (RMSE) of EPESN is reduced by 34.25% and 47.41% respectively, compared to that of ESN. Furthermore, when the dynamic 1 training duration is set at 300 h, the RMSE of EPESN is decreased by 15.30% compared to ESN. The results explicitly demonstrate that the EPESN structure is capable of enhancing the prediction accuracy for the lifespan of PEMFC.

Cite this article

Zhiguang HUA , Shiyuan PAN , Dongdong ZHAO , Xianglong LI , Manfeng DOU . Lifespan prediction of hydrogen fuel cell based on decomposition optimization parallel ESN[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(2) : 330696 -330696 . DOI: 10.7527/S1000-6893.2024.30696

References

1 雷涛, 闵志豪, 付红杰, 等. 燃料电池无人机混合电源动态平衡能量管理策略[J]. 航空学报202041( 12): 324048.
  LEI T, MIN Z H, FU H J, et al. Dynamic balanced energy management strategies for fuel-cell hybrid power system of unmanned air vehicle[J]. Acta Aeronautica et Astronautica Sinica202041( 12): 324048 (in Chinese).
2 DIJOUX E, STEINER N Y, BENNE M, et al. Experimental validation of an active fault tolerant control strategy applied to a proton exchange membrane fuel cell[J]. Electrochem20223( 4): 633- 652.
3 任圆圆, 许亮, 蔡远利. 质子交换膜燃料电池剩余使用寿命预测研究进展[J]. 电源技术202347( 8): 984- 988.
  REN Y Y, XU L, CAI Y L. Progress on remaining useful life prediction of proton exchange membrane fuel cell[J]. Chinese Journal of Power Sources202347( 8): 984- 988 (in Chinese).
4 YUE M L, JEMEI S, ZERHOUNI N, et al. Proton exchange membrane fuel cell system prognostics and decision-making: Current status and perspectives[J]. Renewable Energy2021179: 2277- 2294.
5 LIU J W, LI Q, HAN Y, et al. PEMFC residual life prediction using sparse autoencoder-based deep neural network[J]. IEEE Transactions on Transportation Electrification20195( 4): 1279- 1293.
6 ZHAO Y, LUO M J, YANG J W, et al. Numerical analysis of PEMFC stack performance degradation using an empirical approach[J]. International Journal of Hydrogen Energy202456: 147- 163.
7 李奇, 刘嘉蔚, 陈维荣. 质子交换膜燃料电池剩余使用寿命预测方法综述及展望[J]. 中国电机工程学报201939( 8): 2365- 2375.
  LI Q, LIU J W, CHEN W R. Review and prospect of remaining useful life prediction methods for proton exchange membrane fuel cell[J]. Proceedings of the CSEE201939( 8): 2365- 2375 (in Chinese).
8 赵冬冬, 赵国胜, 夏磊, 等. 无人机用燃料电池阴极供气系统建模与控制[J]. 航空学报202142( 7): 324659.
  ZHAO D D, ZHAO G S, XIA L, et al. Modeling and control of fuel cell cathode gas supply system for UAV[J]. Acta Aeronautica et Astronautica Sinica202142( 7): 324659 (in Chinese).
9 YAN C Z, CHEN J, LIU H, et al. Health management for PEM fuel cells based on an active fault tolerant control strategy[J]. IEEE Transactions on Sustainable Energy202112( 2): 1311- 1320.
10 MA R, XIE R Y, XU L C, et al. A hybrid prognostic method for PEMFC with aging parameter prediction[J]. IEEE Transactions on Transportation Electrification20217( 4): 2318- 2331.
11 ZHENG L, HOU Y P, ZHANG T, et al. Performance prediction of fuel cells using long short-term memory recurrent neural network[J]. International Journal of Energy Research202145( 6): 9141- 9161.
12 CHEN K, LAGHROUCHE S, DJERDIR A. Degradation prediction of proton exchange membrane fuel cell based on grey neural network model and particle swarm optimization[J]. Energy Conversion & Management2019195( S1): 810- 818.
13 ZHU L, CHEN J. Prognostics of PEM fuel cells based on Gaussian process state space models[J]. Energy2018149: 63- 73.
14 REZK H, WILBERFORCE T, SAYED E T, et al. Finding best operational conditions of PEM fuel cell using adaptive neuro-fuzzy inference system and metaheuristics[J]. Energy Reports20228: 6181- 6190.
15 DENG Z H, CHAN S H, CHEN Q H, et al. Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system[J]. Applied Energy2023331: 120385.
16 LIU J W, LI Q, CHEN W R, et al. Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[J]. International Journal of Hydrogen Energy201944( 11): 5470- 5480.
17 JIN J S, CHEN Y P, XIE C J, et al. Degradation prediction of PEMFC based on data-driven method with adaptive fuzzy sampling[J]. IEEE Transactions on Transportation Electrification202410( 2): 3363- 3372.
18 LI S Y, LUAN W L, WANG C, et al. Degradation prediction of proton exchange membrane fuel cell based on Bi-LSTM-GRU and ESN fusion prognostic framework[J]. International Journal of Hydrogen Energy202247( 78): 33466- 33478.
19 LI Z L, ZHENG Z X, OUTBIB R. Adaptive prognostic of fuel cells by implementing ensemble echo state networks in time-varying model space[J]. IEEE Transactions on Industrial Electronics202067( 1): 379- 389.
20 MEZZI R, YOUSFI-STEINER N, PéRA M C, et al. An Echo State Network for fuel cell lifetime prediction under a dynamic micro-cogeneration load profile[J]. Applied Energy2021283: 116297.
21 MORANDO S, JEMEI S, HISSEL D, et al. ANOVA method applied to proton exchange membrane fuel cell ageing forecasting using an echo state network[J]. Mathematics and Computers in Simulation2017131: 283- 294.
22 GHASEMI M, AKBARI M A, JUN C, et al. Circulatory System Based Optimization (CSBO): An expert multilevel biologically inspired meta-heuristic algorithm[J]. Engineering Applications of Computational Fluid Mechanics202216( 1): 1483- 1525.
23 HUA Z G, ZHENG Z X, PAHON E, et al. Remaining useful life prediction of PEMFC systems under dynamic operating conditions[J]. Energy Conversion and Management2021231: 113825.
Outlines

/