Fluid Mechanics and Flight Mechanics

Design of turbine high radius pre-swirl system with high temperature drop

  • Xianzhao YANG ,
  • Gaowen LIU ,
  • Lingying GUO ,
  • Jiale MA ,
  • Aqiang LIN
Expand
  • 1.School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,China
    2.Shanxi Key Laboratory of Thermal Science in Aero-engine System,Northwestern Polytechnical University,Xi’an 710072,China
E-mail: gwliu@nwpu.edu.cn

Received date: 2024-05-13

  Revised date: 2024-06-03

  Accepted date: 2024-07-29

  Online published: 2024-08-20

Supported by

Science Center for Gas Turbine Project(P2022-A-II-007-001);China Postdoctoral Science Foundation(2023M742834);Aviation Science of China(2024M070053001)

Abstract

The performance of the pre-swirl system directly restricts the cooling air quality of the turbine blades in the transition state. In this paper, the forward design of the turbine pre-swirl system is carried out by applying the theory of power-heat conversion. The aerodynamic parameters of each characteristic cross section of the system are calculated according to known boundary conditions, and the flux area of each element and its structural parameters are determined. The three-dimensional physical model is constructed through the results of the one-dimensional calculations, and the structure of high-performance pre-swirl system is obtained through rotor-stator matching iteration. The characterization and performance evaluation of the pre-swirl system with high temperature drop are conducted. The results show that the relative deviations of the bleed air mass flow rate, system temperature drop and temperature drop efficiency of the one-dimensional design calculations and numerical simulation results are less than 1.5%, and the relative deviations of the system temperature drop from the corresponding experimental results are less than 1.5%, provided that the turbine blades supply air mass flow rate and supply air pressure requirements are met. The discharge coefficients of the pre-swirl nozzle, receiver hole and supply hole at the design point are 0.937, 0.716 and 0.744, respectively. The system temperature drop and temperature drop efficiency reach 61.53 K and 80%, respectively, and the specific power consumption of the system is -55.74 kW/(kg·s-1). Under the condition of ensuring the turbine blades supply air mass flow rate and the supply air pressure, the system temperature drop at the four cruise operating points reaches 39.73–62.88 K, and the specific power consumption reaches -55.74–-16.48 kW/(kg·s-1).

Cite this article

Xianzhao YANG , Gaowen LIU , Lingying GUO , Jiale MA , Aqiang LIN . Design of turbine high radius pre-swirl system with high temperature drop[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(2) : 130672 -130672 . DOI: 10.7527/S1000-6893.2024.30672

References

1 MEIERHOFER B, FRANKLIN C J. An investigation of a preswirled cooling airflow to a turbine disc by measuring the air temperature in the rotating channels[R]. New York: ASME, 1981.
2 EL-OUN Z B, OWEN J M. Preswirl blade-cooling effectiveness in an adiabatic rotor-stator system[J]. Journal of Turbomachinery1989111(4): 522-529.
3 FARZANEH-GORD M, WILSON M, OWEN J M. Numerical and theoretical study of flow and heat transfer in a pre-swirl rotor-stator system[R].New York: ASME, 2005.
4 KARABAY H, WILSON M, OWEN J M. Predictions of effect of swirl on flow and heat transfer in a rotating cavity[J]. International Journal of Heat and Fluid Flow200122(2): 143-155.
5 MA J L, LIU G W, LI J Z, et al. Evaluation of low power consumption and temperature drop potential in an aero-engine pre-swirl system for turbine performance improvement[J]. Applied Energy2024359: 122601.
6 吴衡, 冯青, 刘高文, 等. 熵分析法在盖板式预旋系统分析中的应用[J]. 推进技术201637(11): 2048-2054.
  WU H, FENG Q, LIU G W, et al. Entropy analysis of a cover-plate pre-swirl system[J]. Journal of Propulsion Technology201637(11): 2048-2054 (in Chinese).
7 林阿强, 赵义祯, 王俊凇, 等. 燃气涡轮发动机预旋系统温降和功耗的作用机制与理论分析[J]. 中国电机工程学报202242(11): 4090-4101.
  LIN A Q, ZHAO Y Z, WANG J S, et al. Mechanism and theoretical analysis of temperature drop and power consumption in a pre-swirl system of gas turbine engine[J]. Proceedings of the CSEE202242(11): 4090-4101 (in Chinese).
8 林阿强, 刘高文, 吴衡, 等. 燃气涡轮发动机预旋系统压比和熵增的作用机制与理论分析[J]. 航空学报202243(01): 125907.
  LIN A Q, LIU G W, WU H, et al. Mechanism and theoretical analysis of pressure ratio and entropy increase in a pre-swirl system of gas turbine engine[J]. Acta Aeronautica et Astronautica Sinica202243(1): 125907 (in Chinese).
9 唐国庆, 薛伟鹏, 曾军, 等. 低损失融合式预旋喷嘴设计与研究[J]. 推进技术202041(9): 2011-2020.
  TANG G Q, XUE W P, ZENG J, et al. Design and study of low loss integrated pre-swirl nozzle[J]. Journal of Propulsion Technology202041(9): 2011-2020 (in Chinese).
10 孔晓治, 刘高文, 刘育心, 等. 叶片式预旋喷嘴出口流场实验研究[J]. 推进技术201940(10): 2279-2287.
  KONG X Z, LIU G W, LIU Y X, et al. Test of outlet flow field for cascade vane nozzle[J]. Journal of Propulsion Technology201940(10): 2279-2287 (in Chinese).
11 刘育心, 刘高文, 吴衡, 等. 叶型孔式预旋喷嘴流动特性数值研究[J]. 推进技术201637(2): 332-338.
  LIU Y X, LIU G W, WU H, et al. Numerical investigation on flow characteristics of a vane shaped hole preswirl nozzle[J]. Journal of Propulsion Technology201637(2): 332-338 (in Chinese).
12 刘育心, 刘高文, 孔晓治, 等. 叶型预旋喷嘴流动及温降特性实验与计算研究[J]. 推进技术201940(4): 815-824.
  LIU Y X, LIU G W, KONG X Z, et al. Experimental testing and numerical analysis on flow characteristics and cooling performance for two vane pre-swirl nozzles[J]. Journal of Propulsion Technology201940(4): 815-824 (in Chinese).
13 郑笑天, 王锁芳, 韦光礼. 接受孔形状对预旋供气系统内气流流动影响研究[J]. 推进技术202041(10): 2222-2227.
  ZHENG X T, WANG S F, WEI G L. Effects of receiver hole shape on air flow in pre-swirl air supply system[J]. Journal of Propulsion Technology202041(10): 2222-2227 (in Chinese).
14 龚文彬, 刘高文, 王斐, 等. 叶型接受孔对高位预旋供气系统流动温降影响的实验研究[J]. 西安交通大学学报202155(7): 97-105.
  GONG W B, LIU G W, WANG F, et al. Experimental study on the influence of vane-shaped receiver holes on flow and temperature drop of a high-radius pre-swirl air supply system[J]. Journal of Xi’an Jiaotong University202155(7): 97-105 (in Chinese).
15 张越, 刘高文, 李鹏飞, 等. 内封严流对预旋供气系统性能影响的实验研究[J]. 航空学报202445(20): 284-295.
  ZHANG Y, LIU G W, LI P F, et al. Experimental study of inner seal flow effect on pre-swirl air supply system performance[J]. Acta Aeronautica et Astronautica Sinica202445(20): 284-295 (in Chinese).
16 刘育心, 刘高文, 徐权, 等. 无量纲叶高对叶型喷嘴流动特性的影响[J]. 推进技术201536(3): 392-398.
  LIU Y X, LIU G W, XU Q, et al. Effects of non-dimensional blade height on flow characteristics of cascade vane preswirl nozzle[J]. Journal of Propulsion Technology201536(3): 392-398 (in Chinese).
17 LIU Y X, YUE B Z, KONG X Z, et al. Design and performance analysis of a vane shaped rotating receiver hole in high radius pre-swirl systems for gas turbine cooling[J]. Aerospace Science and Technology2021115: 106807.
18 马佳乐, 庞亮玮, 隋宏人, 等. 涡轮预旋供气系统跑道型接受孔对性能影响的实验评估[J]. 中国电机工程学报202343(7): 2761-2770, 24.
  MA J L, PANG L W, SUI H R, et al. Influence of the runway-shaped receiver holes on the performance experimental evaluation of the turbine pre-swirl air supply system[J]. Proceedings of the CSEE202343(7): 2761-2770, 24 (in Chinese).
19 白杨, 赵义祯, 张林, 等. 叶型接受孔耦合叶轮结构优化对涡轮预旋供气系统性能改进研究[J]. 中国电机工程学报202343(15): 5943-5954.
  BAI Y, ZHAO Y Z, ZHANG L, et al. Structural optimization of blade-shaped receiver hole coupled with impeller on turbine pre-swirl system for performance improvement[J]. Proceedings of the CSEE202343(15): 5943-5954 (in Chinese).
20 SNOWSILL G D, YOUNG C. The application of CFD to underpin the design of gas turbine pre-swirl systems[R]. New York: ASME, 2006.
21 LEWIS P, WILSON M, LOCK G, et al. Effect of radial location of nozzles on performance of pre-swirl systems[R]. New York: ASME, 2008.
22 刘育心. 叶型预旋供气系统设计及其流动与温降特性研究[D]. 西安: 西北工业大学, 2019.
  LIU Y X. Design of blade pre-swirl gas supply system and study on its flow and temperature drop characteristics[D]. Xi’an: Northwestern Polytechnical University, 2019 (in Chinese).
23 李金泽. 高位过预旋供气系统叶型接受孔设计计算研究[D]. 西安: 西北工业大学, 2021.
  LI J Z. Design and calculation investigation on the vane-shaped receiver hole in a high-radius over-pre-swirl system[D]. Xi’an: Northwestern Polytechnical University, 2021 (in Chinese).
24 JAVIYA U, CHEW J, HILLS N, et al. CFD analysis of flow and heat transfer in a direct transfer pre-swirl system[R]. New York: ASME, 2010.
25 何振威. 带盖板的预旋供气系统的流动和温降实验研究[D]. 西安: 西北工业大学, 2011.
  HE Z W. Experiment investigations of flow and temperature drop in a pre-swirl system with a “cover-plate”[D]. Xi’an: Northwestern Polytechnical University, 2019 (in Chinese).
26 LIN A Q, LIU G W, WANG X X, et al. Comprehensive evaluations on performance and energy consumption of pre-swirl rotor-stator system in gas turbine engines[J]. Energy Conversion and Management2021244: 114440.
27 陈帆, 王锁芳, 张光宇, 等. 接受孔角度对预旋系统流动特性影响的数值研究[J]. 推进技术201839(7): 1549-1555.
  CHEN F, WANG S F, ZHANG G Y, et al. Numerical study on effects of receiver holes angles on flow characteristics of pre-swirl system[J]. Journal of Propulsion Technology201839(7): 1549-1555 (in Chinese).
28 JAVIYA U, CHEW J, HILLS N, et al. Evaluation of CFD and coupled fluid-solid modelling for a direct transfer pre-swirl system[R]. New York: ASME, 2012.
29 JIAN M H, YANG X S, DONG W. Numerical investigation on the flow characteristics in a cover-plate pre-swirl system[R]. New York: ASME, 2021.
30 LEE H, LEE J, KIM S, et al. Pre-swirl system design including inlet duct shape by using CFD analysis[R]. New York: ASME, 2018.
31 KOCK F, HERWIG H. Entropy production calculation for turbulent shear flows and their implementation in cfd codes[J]. International Journal of Heat and Fluid Flow200526(4): 672-680.
Outlines

/