ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Establishment of standard model of linear cascade wind tunnel for subsonic compressor
Received date: 2024-04-18
Revised date: 2024-05-06
Accepted date: 2024-07-25
Online published: 2024-08-20
Supported by
National Natural Science Foundation of China(92152301);National Science and Technology Major Project of China (2017-Ⅱ-0001-0013)
The standard model for linear cascade wind tunnel is the key to the construction of axial compressor design system and the standardization of linear cascade testing technique. The standard model of compressor cascade with a typical controlled diffusion airfoil is designed and tested based on the linear cascade wind tunnel of Northwestern Polytechnical University. The flow quality of the standard cascade including inflow precision, flow periodicity, and two-dimensionality is adjusted by a self-established integrated control system. On the basis of ensuring the flow quality, the performance of the standard cascade is measured, including the features of incidence and axial velocity density ratio, as well as the distributions of surface isentropic Mach number and wake, and is then compared to the reference cascade data published by DLR. The results show that the standard cascade exhibits good flow periodicity and accuracy, including a uniform region over four successive blade passages upstream and a periodicity range over two successive blade passages downstream, and the periodicity index of outflow is less than 2. The deviation of the inlet Mach number and axial velocity density ratio in the measuring blade passage is no more than 0.005 and 0.02, respectively. The comparison with the reference cascade data shows that the variation laws of the loss, exit flow angle and static pressure ratio with the inlet flow angle are essentially the same between the standard cascade and reference cascade at the design inlet Mach number of 0.62. The loss and exit flow angle of the standard cascade are larger than those of the reference cascade due to the difference of measuring position downstream of cascade, but the static pressure ratio is basically the same. The distributions of the surface isentropic Mach numbers for the two sets of cascades are highly consistent. In general, the test data for the established standard cascade are comprehensive and reliable.
Ming CAI , Limin GAO , Ruiyu LI , Bo OUYANG , Bo LIU . Establishment of standard model of linear cascade wind tunnel for subsonic compressor[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(2) : 130547 -130547 . DOI: 10.7527/S1000-6893.2024.30547
1 | 战培国, 赵昕. 风洞发展现状及趋势研究[J]. 航空科学技术, 2010, 21(4): 5-7. |
ZHAN P G, ZHAO X. Wind tunnels development status and trends[J]. Aeronautical Science & Technology, 2010, 21(4): 5-7 (in Chinese). | |
2 | 李周复. 风洞试验手册[M]. 北京: 航空工业出版社, 2015: 1-10. |
LI Z F. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2015: 1-10 (in Chinese). | |
3 | 楚武利, 刘前智, 胡春波. 航空叶片机原理[M]. 西安: 西北工业大学出版社, 2009: 37-41. |
CHU W L, LIU Q Z, HU C B. Principle of aviation blade machine[M]. Xi’an: Northwestern Polytechnical University Press, 2009: 37-41 (in Chinese). | |
4 | CENTER L, JOHNSEN I A, BULLOCK R O. Aerodynamic design of axial-flow compressors: NACA RM E56B03a[R]. Washington: National Advisory Committee for Aeronautics, 1956. |
5 | LIEBLEIN S. Aerodynamic design of axial-flow com-pressors. VI-experimental flow in two-dimensional cascades: NASA RM-E55K01a[R]. Washington: National Advisory Committee for Aeronautics, 1955. |
6 | ANDREWS B S. Tests related to the effect of profile shape and camberline on compressor cascade performance: ARC R&M 2743[R]. London: Her Majesty’s Stationery Office, 1955. |
7 | HOWELL A R. Fluid dynamics of axial compressors[J]. Proceedings of the Institution of Mechanical Engineers, 1945, 153(1): 441-452. |
8 | SCHREIBER H A, STARKEN H. Experimental cascade analysis of a transonic compressor rotor blade section[J]. Journal of Engineering for Gas Turbines and Power, 1984, 106(2): 288-294. |
9 | GOSTELOW J P. Cascade aerodynamics[M]. Oxford: Pergamon Press, 1984: 73-77. |
10 | POLLARD D, GOSTELOW J P. Some experiments at low speed on compressor cascades[J]. Journal of Engineering for Power, 1967, 89(3): 427-436. |
11 | 凌代军, 代秋林, 朱榕川, 等. 叶栅试验技术综述[J]. 实验流体力学, 2021, 35(3): 30-38. |
LING D J, DAI Q L, ZHU R C, et al. Review of the cascade experimental technology[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 30-38 (in Chinese). | |
12 | 蔡明, 高丽敏, 刘哲, 等. 亚声速压气机平面叶栅及其改型的吹风试验[J]. 实验流体力学, 2021, 35(2): 36-42. |
CAI M, GAO L M, LIU Z, et al. Cascade testing for a subsonic compressor linear cascade and its modification[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 36-42 (in Chinese). | |
13 | 杨光, 高丽敏, 王浩浩, 等. 波纹对高亚声叶型性能影响试验与机理分析[J]. 航空动力学报, 2024, 39(7):20220480. |
YANG G, GAO L M, WANG H H, et al. Experiment and mechanism analysis on the effect of waves on the performance of high-subsonic profile[J]. Journal of Aerospace Power, 2024, 39(7): 20220480 (in Chinese). | |
14 | 刘宝杰, 徐晓斌, 于贤君, 等. CDA叶型前缘流动的试验和数值研究[J]. 工程热物理学报, 2019, 40(8):1767-1774. |
LIU B J, XU X B, YU X J, et al. Experimental and numerical investigation on the flow near the leading-edge of controlled diffusion airfoil?[J]. Journal of Engineering Thermophysics, 2019, 40(8):1767-1774 (in Chinese). | |
15 | 向宏辉, 葛宁, 侯敏杰, 等. 高来流马赫数单列叶栅改串列叶栅性能对比试验[J]. 航空动力学报, 2016, 31(11): 2757-2764. |
XIANG H H, GE N, HOU M J, et al. Performance contrast experiment of prototype single cascade and redesign tandem cascade at high inlet Mach number[J]. Journal of Aerospace Power, 2016, 31(11): 2757-2764 (in Chinese). | |
16 | 高宇, 钟兢军, 李晓东, 等. 跨声速压气机动叶平面叶栅实验[J]. 航空动力学报, 2016, 31(5): 1178-1185. |
GAO Y, ZHONG J J, LI X D, et al. Experiment on rotor plane cascade of transonic compressor[J]. Journal of Aerospace Power, 2016, 31(5): 1178-1185 (in Chinese). | |
17 | 魏巍, 任思源, 马护生, 等. 亚声速压气机平面叶栅雷诺数影响试验[J]. 航空动力学报, 2022, 37(5): 1020-1029. |
WEI W, REN S Y, MA H S, et al. Experiment of Reynolds number effects on subsonic compressor plane cascade[J]. Journal of Aerospace Power, 2022, 37(5): 1020-1029 (in Chinese). | |
18 | 刘锬韬, 李瑞宇, 高丽敏, 等. 基于数据同化的试验数据驱动的叶栅流场预测[J]. 航空学报, 2023, 44(14): 628201. |
LIU T T, LI R Y, GAO L M, et al. Experimental data driven cascade flow field prediction based on data assimilation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14): 628201 (in Chinese). | |
19 | 蔡明. 高亚声速平面叶栅风洞流场品质及其调控策略研究[D]. 西安: 西北工业大学, 2022: 15-22. |
CAI M. Research on flow field quality and control strategy of high subsonic linear cascade wind tunnel[D]. Northwestern Polytechnical University, 2022: 15-22. (in Chinese). | |
20 | 蔡明, 高丽敏, 刘哲, 等. 基于抽吸的亚声速平面叶栅风洞流场品质控制研究[J]. 推进技术, 2021, 42(9):1985-1992. |
CAI M, GAO L M, LIU Z, et al. Study on flow field quality control of subsonic linear cascade wind tunnel based on suction[J]. Journal of Propulsion Technology, 2021, 42(9):1985-1992 (in Chinese). | |
21 | 蔡明, 高丽敏, 刘哲, 等. 不同条件下平面叶栅风洞流场品质的试验研究[J]. 推进技术, 2021, 42(5):1162-1170. |
CAI M, GAO L M, LIU Z, et al. Experimental study on flow Field quality of linear cascade wind tunnel under different conditions[J]. Journal of Propulsion Technology, 2021, 42(5):1162-1170 (in Chinese) . | |
22 | 蔡明, 高丽敏, 晋文浩, 等. 平面叶栅风洞流场品质的被动调控策略[J]. 航空动力学报, 2024, 39(7): 20220482. |
CAI M, GAO L M, JIN W H, et al. Passive control strategy for flow quality of linear cascade wind tunnel[J]. Journal of Aerospace Power, 2024, 39(7): 20220482 (in Chinese). | |
23 | 孙鹏, 张益智, 傅文广, 等. 跨声速平面叶栅试验器流场品质改善研究[J]. 推进技术, 2022, 43(12): 210731. |
SUN P, ZHANG Y Z, FU W G, et al. Flow field quality improvement of transonic linear cascade test device[J]. Journal of Propulsion Technology, 2022, 43(12): 210731 (in Chinese). | |
24 | 傅文广, 杨昭, 张益智, 等. 高负荷平面叶栅风洞流场品质改进措施数值研究[J]. 推进技术, 2023,44(7):173-184. |
FU W G, YANG Z, ZHANG Y Z, et al. Numerical study on flow feld quality improvement in a highly loaded linear cascade wind tunnel?[J]. Journal of Propulsion Technology, 2023, 44(7): 173-184 (in Chinese). | |
25 | ERWIN J R, EMERY J C. Effect of tunnel configuration and testing technique on cascade performance: NASA Report 1016[R]. Washington: National Advisory Committee for Aeronautics, 1951. |
26 | SONG B, GUI X M, LI S M, et al. Flow periodicity improvement in a high speed compressor cascade with a large turning-angle[C]∥38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002. |
27 | LEPICOVSKY J, MCFARLAND E R, CHIMA R V, et al. On flowfield periodicity in the NASA transonic flutter cascade: part I—experimental study: NASA/TM-2000-209934[R]. Ohio: National Aeronautics and Space Administration, 1956. |
28 | TIAN S M, PETRIE-REPAR P, GLODIC N, et al. CFD-aided design of a transonic aeroelastic compressor rig[J]. Journal of Turbomachinery, 2019, 141(10): 101003. |
29 | 邓熙, 刘波, 马乃行. 高亚声速大弯角轴流压气机平面叶栅损失模型研究[J]. 推进技术, 2015, 36(9): 1302-1308. |
DENG X, LIU B, MA N H /X). Investigation of loss model applicable to large range of high subsonic cascades in axial-flow compressor[J]. Journal of Propulsion Technology, 2015, 36(9): 1302-1308 (in Chinese). | |
30 | 高丽敏, 蔡宇桐, 曾瑞慧, 等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术, 2017, 38(3): 525-531. |
GAO L M, CAI Y T, ZENG R H, et al. Effects of blade machining error on compressor cascade aerodynamic performance?[J]. Journal of Propulsion Technology, 2017, 38(3):525-531 (in Chinese). | |
31 | 高丽敏, 刘哲, 蔡明, 等. 高负荷扩压叶栅吹风试验流场二维性控制技术研究[J]. 实验流体力学, 2021, 35(2): 13-21. |
GAO L M, LIU Z, CAI M, et al. Study on two-dimensional control technology of flow field in high-load compressor cascade test[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 13-21 (in Chinese). | |
32 | 蔡明, 高丽敏, 刘哲, 等. 高负荷扩压平面叶栅进口均匀性分析及改进[J]. 工程热物理学报, 2021, 42(12): 3164-3169. |
CAI M, GAO L M, LIU Z, et al. Analysis and modification on inflow uniformity of highly-loaded compressor linear cascade[J]. Journal of Engineering Thermophysics, 2021, 42(12): 3164-3169 (in Chinese). | |
33 | 刘哲. 有关平面叶栅的AVDR研究[D]. 西安: 西北工业大学, 2021: 41-46. |
LIU Z. The investigation of axial velocity density ratio on the linear cascade[D]. Northwestern Polytechnical University, 2021: 41-46 (in Chinese). | |
34 | 高丽敏, 刘哲, 蔡明, 等. 四种风洞收缩段流场特性对比[J]. 航空动力学报, 2020, 35(8): 1695-1705. |
GAO L M, LIU Z, CAI M, et al. Comparison on flow field characteristics of four wind tunnel contraction sections?[J]. Journal of Aerospace Power, 2020, 35(8): 1695-1705 (in Chinese). | |
35 | 恽起麟, 孙邵鹏, 徐明方, 等. 高速风洞和低速风洞流场品质规范: [S]. 北京, 国防科学技术工业委员会, 1991: 1-15. |
YUN Q L, SUN S P, XU M Fet al. High-speed wind tunnel and low-speed wind tunnel flow field quality specification: [S]. Beijing: Commission for Science, Technology and Industry for National Defense, 1991: 1-15 (in Chinese). | |
36 | 姜正礼, 凌代军, 于宏军, 等. 超跨音速平面叶栅试验方法: [S]. 北京: 国防科技工业局, 2015. |
JIANG Z L, LIN D J, YU H J, et al. The method of supersonic/transonic linear cascade experiments: ?[S]. Beijing: State Administration of Science, Technology and Industry for National Defense, 2015 (in Chinese). | |
37 | STEINERT W, EISENBERG B, STARKEN H. Design and testing of a controlled diffusion airfoil cascade for industrial axial flow compressor application[J]. Journal of Turbomachinery, 1990, 113(4):583-590. |
38 | 刘波, 周新海, 严汝群. 轴流压气机可控扩散叶型的数值优化设计[J]. 航空动力学报, 1991(1): 9-12, 89. |
LIU B, ZHOU X H, YAN R Q. Numerical optimization program for designing controlled diffusion compressor blading[J]. Journal of Aerospace Power, 1991(1): 9-12,89. (in Chinese). | |
39 | 钟兢军, 王会社, 王仲奇. 多级压气机中可控扩散叶型研究的进展与展望 第一部 分可控扩散叶型的设计与发展[J]. 航空动力学报, 2001, 16(3): 205-211. |
ZHONG J J, WANG H S, WANG Z Q. Development and prospect of Controlled Diffusion Airfoils for Multistage Compressor Part-Ⅰ: design and Development of Controlled Diffusion Airfoils?[J]. Journal of Aerospace Power, 2001, 16(3): 205-211 (in Chinese). | |
40 | 王会社, 钟兢军, 王仲奇. 多级压气机中可控扩散叶型研究的进展与展望第二部分可控扩散叶型的试验与数值模拟[J]. 航空动力学报, 2002(1): 16-22. |
41 | STEINERT W, STARKEN H. Off-design transition and separation behavior of a CDA casscade[J]. Journal of Turbomachinery, 1996(118): 204-210 (in Chinese). |
42 | KU¨STERS B, SCHREIBER H A, KO¨LLER U, et al. 1999 turbomachinery committee best paper award: development of advanced compressor airfoils for heavy-duty gas turbines—part Ⅱ: experimental and theoretical analysis[J]. Journal of Turbomachinery, 2000, 122(3): 406-414. |
/
〈 |
|
〉 |