ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Optimization of climb trajectory of combined-cycle engine powered aircraft based on improved CSO-Gauss pseudospectral method
Received date: 2024-05-27
Revised date: 2024-07-02
Accepted date: 2024-07-29
Online published: 2024-08-10
Supported by
Fundamental Research Funds for Central Universities(YWF-23-SDHK-L-005);Aeronautical Science Foundation of China(20220048051001);1912 Project
Combined-cycle engine powered aircraft has high percentage of fuel consumption during the climb phase, and its safety during power mode switching and choice of switching time require urgent attention. Therefore, optimization of the climb trajectory is of great importance for the combined-cycle engine powered aircraft. However, the challenges of model nonlinearity, non-convex constraints and strong aircraft-engine coupling make the problem difficult to solve. Firstly, a combined-cycle engine powered aircraft model that represents the characteristic of aircraft-engine coupling is established. Secondly, to solve the problem efficiently, the updating rules of the Chicken Swarm Optimization (CSO) are improved. Then, the CSO is fused with the Gauss pseudospectral method to form a hybrid optimization algorithm. Finally, a correlation analysis between the fuel consumption during the climb phase and the key parameters of the aircraft is performed. The simulation results show that the improved CSO-Gauss pseudospectral method achieves lower fuel consumption than either the CSO or the Gauss pseudospectral method. In addition, the fuel consumption of the proposed model during the climb phase is negatively correlated with the lift-to-drag ratio of the aircraft, and the selection of the power mode switching point also has a significant effect on the fuel consumption but does not show monotonicity.
Yousheng WANG , Liguo SUN , Jinpeng WEI , Wenqian TAN , Yonghao PAN . Optimization of climb trajectory of combined-cycle engine powered aircraft based on improved CSO-Gauss pseudospectral method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(2) : 230737 -230737 . DOI: 10.7527/S1000-6893.2024.30737
1 | 黄伟, 夏智勋. 美国高超声速飞行器技术研究进展及其启示[J]. 国防科技, 2011, 32(3): 17-20. |
HUANG W, XIA Z X. Research progress and apocalypses on the American hypersonic vehicle technology[J]. National Defense Technology, 2011, 32(3): 17-20 (in Chinese). | |
2 | 张增辉, 杨凌宇, 申功璋. 高超声速飞行器大包线切换LPV控制方法[J]. 航空学报, 2012, 33(9): 1706-1716. |
ZHANG Z H, YANG L Y, SHEN G Z. Switching LPV control method in wide flight envelope for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1706-1716 (in Chinese). | |
3 | 牧童, 黄一敏, 王浩鑫. 组合动力原型机吸气爬升段纵向控制器设计[J]. 机械制造与自动化, 2024, 53(2): 252-257. |
MU T, HUANG Y M, WANG H X. Longitudinal controller design for climb phase of combined-cycle vehicle[J]. Machine Building & Automation, 2024, 53(2): 252-257 (in Chinese). | |
4 | QI Y K, MA X F, JIANG P X, et al. Review on heat-to-power conversion technologies for hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2024, 37(5): 148-179. |
5 | 张泰. 吸气式高超声速飞行器轨迹优化研究[D]. 哈尔滨: 哈尔滨工业大学, 2013: 11. |
ZHANG T. Research on trajectory optimization of air-breathing hypersonic vehicle[D].Harbin: Harbin Institute of Technology, 2013: 11 (in Chinese). | |
6 | LUO Y H, WANG J Y, JIANG J, et al. Reentry trajectory planning for hypersonic vehicles via an improved sequential convex programming method[J]. Aerospace Science and Technology, 2024, 149: 109130. |
7 | GATH P F, CALISE A J. Optimization of launch vehicle ascent trajectories with path constraints and coast arcs[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 296-304. |
8 | 汤佳骏, 刘燕斌, 曹瑞, 等. 吸气式高超声速飞行器爬升段关键任务点的鲁棒优化[J]. 宇航学报, 2020, 41(5): 507-520. |
TANG J J, LIU Y B, CAO R, et al. Robust optimization of key mission points in climbing phase for air-breathing hypersonic vehicle[J]. Journal of Astronautics, 2020, 41(5): 507-520 (in Chinese). | |
9 | 向宏程, 邓亦敏, 段海滨. 基于探索群策略鸽群优化的高超声速飞行器飞/发一体化控制[J]. 智能系统学报, 2022, 17(4): 849-855. |
XIANG H C, DENG Y M, DUAN H B. Integrated control of hypersonic aerial vehicle and engine system based on exploring swarm strategy based pigeon inspired optimization[J]. CAAI Transactions on Intelligent Systems, 2022, 17(4): 849-855 (in Chinese). | |
10 | QU C R, CHENG L, GONG S P, et al. Dynamic-matching adaptive sliding mode control for hypersonic vehicles[J]. Aerospace Science and Technology, 2024, 149: 109159. |
11 | SUDALAGUNTA P R, SULTAN C, KAPANIA R K, et al. Aeroelastic control-oriented modeling of an air-breathing hypersonic vehicle: AIAA-2016-1325[R]. Reston: AIAA, 2016. |
12 | YANG S B, CUI T, HAO X Y, et al. Trajectory optimization for a ramjet-powered vehicle in ascent phase via the Gauss pseudospectral method[J]. Aerospace Science and Technology, 2017, 67: 88-95. |
13 | 刘凯, 郭健, 周文雅, 等. 吸气式组合动力高超声速飞行器上升段制导方法研究[J]. 宇航学报, 2020, 41(8): 1023-1031. |
LIU K, GUO J, ZHOU W Y, et al. Investigation on ascent guidance law for air-breathing combined-cycle hypersonic vehicle[J]. Journal of Astronautics, 2020, 41(8): 1023-1031 (in Chinese). | |
14 | 孙佩华, 刘燕斌, 陈柏屹. 基于预置动压的高超声速飞行器上升段轨迹设计[J]. 飞行力学, 2017, 35(5): 57-61. |
SUN P H, LIU Y B, CHEN B Y. Ascent trajectory design of hypersonic vehicle based on preset dynamic pressure[J]. Flight Dynamics, 2017, 35(5): 57-61 (in Chinese). | |
15 | 吕翔, 何国强, 刘佩进. RBCC飞行器爬升段轨迹设计方法[J]. 航空学报, 2010, 31(7): 1331-1337. |
LV X, HE G Q, LIU P J. Ascent trajectory design method for RBCC-powered vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1331-1337 (in Chinese). | |
16 | ZHANG T F, SU H, GONG C L. A three-stage sequential convex programming approach for trajectory optimization[J]. Aerospace Science and Technology, 2024, 149: 109128. |
17 | 宋晓晨, 姚骁帆, 叶尚军. 基于伪谱法的小型超音速无人机轨迹优化[J]. 浙江大学学报(工学版), 2022, 56(1): 193-201. |
SONG X C, YAO X F, YE S J. Trajectory optimization of small supersonic unmanned aerial vehicle based on pseudo-spectral method[J]. Journal of Zhejiang University (Engineering Science), 2022, 56(1): 193-201 (in Chinese). | |
18 | MAHMOUD A M, CHEN W C, ZHOU H, et al. Trajectory optimization for ascent and glide phases using Gauss pseudospectral method[J]. International Journal of Modeling and Optimization, 2016, 6(5): 289-295. |
19 | SONG J, SU H Q. The ascent trajectory optimization of two-stage-to-orbit aerospace plane based on pseudospectral method[J]. Procedia Engineering, 2015, 99: 1044-1048. |
20 | CHENG X M, LI H F, ZHANG R. Efficient ascent trajectory optimization using convex models based on the Newton-Kantorovich/Pseudospectral approach[J]. Aerospace Science and Technology, 2017, 66: 140-151. |
21 | 王嘉炜, 张冉, 郝泽明, 等. 基于Proximal-Newton-Kantorovich凸规划的空天飞行器实时轨迹优化[J]. 航空学报, 2020, 41(11): 624051. |
WANG J W, ZHANG R, HAO Z M, et al. Real-time trajectory optimization for hypersonic vehicles with Proximal-Newton-Kantorovich convex programming[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 624051 (in Chinese). | |
22 | LI Z H, HU C, DING C B, et al. Stochastic gradient particle swarm optimization based entry trajectory rapid planning for hypersonic glide vehicles[J]. Aerospace Science and Technology, 2018, 76: 176-186. |
23 | 周宏宇. 组合动力可重复使用运载器三维轨迹优化与在线制导方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 19. |
ZHOU H Y. Research on 3D trajectory optimization and online guidance method of combined power reusable launch vehicle[D]. Harbin: Harbin Institute of Technology, 2019: 19 (in Chinese). | |
24 | WU D H, XU S P, KONG F. Convergence analysis and improvement of the chicken swarm optimization algorithm[J]. IEEE Access, 2016, 4: 9400-9412. |
25 | WANG J Q, CHENG Z W, ERSOY O K, et al. Improvement and application of chicken swarm optimization for constrained optimization[J]. IEEE Access, 2019, 7: 58053-58072. |
26 | FU W Z, WANG B, LI X, et al. Ascent trajectory optimization for hypersonic vehicle based on improved chicken swarm optimization[J]. IEEE Access, 2019, 7: 151836-151850. |
27 | 刘君, 袁化成, 王云飞, 等. 组合动力推进系统总体性能初步分析[C]∥中国航天第三专业信息网第三十七届技术交流会暨第一届空天动力联合会议. 2016: 874-884. |
LIU J, YUAN H C, WANG Y F, et al. Preliminary analysis of the overall performance of the combined-cycle propulsion system[C]∥The 37th Technical Seminar of the Third Professional Information Network of China Aerospace and the First Conference of Aerospace Propulsion. 2016: 874-884 (in Chinese). | |
28 | BOLENDER M A, DOMAN D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 374-387. |
29 | 罗文莉, 李道春, 向锦武. 吸气式高超声速飞行器大迎角气动特性分析[J]. 航空学报, 2015, 36(1): 223-231. |
LUO W L, LI D C, XIANG J W. Aerodynamic characteristics analysis of air-breathing hypersonic vehicles at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 223-231 (in Chinese). | |
30 | 李乐, 姜光泰, 褚显应, 等. TBCC飞行器发动机尺寸选型及爬升策略设计[J]. 宇航学报, 2018, 39(1): 17-26. |
LI Y, JIANG G T, CHU X Y, et al. Research on TBCC engine size selection and ascent strategy of combined-cycle aircraft[J]. Journal of Astronautics, 2018, 39(1): 17-26 (in Chinese). | |
31 | MENG X B, LIU Y, GAO X Z, et al. A new bio-inspired algorithm: Chicken swarm optimization[C]∥5th International Conference on Swarm Intelligence. Cham: Springer, 2014: 86-94. |
/
〈 |
|
〉 |