ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Design method of hypersonic inward turning inlet based on genetic and gradient hybrid optimization strategy
Received date: 2024-06-07
Revised date: 2024-07-01
Accepted date: 2024-07-31
Online published: 2024-08-05
Supported by
National Natural Science Foundation of China(11972308)
The hypersonic inward-turning inlet has attracted wide attention because of its higher compression efficiency and larger flow coefficient. Nowadays, traditional design methods cannot achieve the optimal performance of the inlet. Therefore, coupling the genetic algorithm and the gradient algorithm, this paper proposes a new design method for the hypersonic inward-turning inlet based on the hybrid optimization strategy, and completes the design of the inlet at Mach number 6. Firstly, the global configuration design of the basic flowfield is conducted using genetic optimization, resulting in a Pareto front of basic flowfields with good performance. Among them, a typical dual-shock wave basic flowfield is selected to design the dual-shock wave inward-turning inlet. Secondly, the refined shape design of the above inlet is carried out based on adjoint gradient optimization, which further improves the performance of the inlet. Consequently, compared to inward-turning inlets designed using the traditional forward design methods, the performance of the inlet constructed by the design method is significantly improved. The flow coefficient, total pressure recovery coefficient and pressure rising ratio are increased by 2.33%, 13.15% and 7.90%, respectively, and the distortion coefficient (DC60) is reduced by 3.70%. During the global configuration design, the overall parameters of the basic flowfield, such as the radius of the center body and outlet, are designed to obtain the optimal-performing global configuration of basic flowfield. During the refined shape design, the fluctuations of the inlet surface improve the mass capture performance and compression capability of the shock wave in the isolation section. In addition, the surface deformation also weakens the total pressure loss caused by the second incident shock wave, the development of streamwise vortexes and the flow separation induced by shock-wave/turbulent-layer interaction in the isolation section. Furthermore, the weakening of streamwise vortexes and flow separation results in the reduction of total pressure loss in the isolation section and the improvement of flow uniformity on the outflow boundary.
Jun CHEN , Feng QU , Junjie FU . Design method of hypersonic inward turning inlet based on genetic and gradient hybrid optimization strategy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(3) : 130808 -130808 . DOI: 10.7527/S1000-6893.2024.30808
1 | 吴颖川, 贺元元, 贺伟, 等. 吸气式高超声速飞行器机体推进一体化技术研究进展[J]. 航空学报, 2015, 36(1): 245-260. |
WU Y C, HE Y Y, HE W, et al. Progress in airframe-propulsion integration technology of air-breathing hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 245-260 (in Chinese). | |
2 | 南向军. 压升规律可控的高超声速内收缩进气道设计方法研究[D]. 南京: 南京航空航天大学, 2012. |
NAN X J. Study on design method of hypersonic internal contraction inlet with controllable pressure rise law[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
3 | GOLLAN R, GOLLAN R, FERLEMANN P, et al. Investigation of REST-class hypersonic inlet designs: AIAA-2011-2254[R]. Reston: AIAA, 2011. |
4 | 李怡庆, 施崇广, 朱呈祥, 等. 乘波前体三维内转进气道气动融合设计[J]. 推进技术, 2018, 39(10): 2320-2328. |
LI Y Q, SHI C G, ZHU C X, et al. Aerodynamic combination design concept for hypersonic waverider forebody and inward turning inlet[J]. Journal of Propulsion Technology, 2018, 39(10): 2320-2328 (in Chinese). | |
5 | 尤延铖, 梁德旺, 郭荣伟, 等. 高超声速三维内收缩式进气道/乘波前体一体化设计研究评述[J]. 力学进展, 2009, 39(5): 513-525. |
YOU Y C, LIANG D W, GUO R W, et al. Overview of the integration of three-dimensional inward turning hypersonic inlet and waverider forebody[J]. Advances in Mechanics, 2009, 39(5): 513-525 (in Chinese). | |
6 | 乔文友, 余安远. 内转式进气道与飞行器前体的一体化设计综述[J]. 实验流体力学, 2019, 33(3): 43-59. |
QIAO W Y, YU A Y. Overview on integrated design of inward-turning inlet with aircraft forebody [J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59 (in Chinese). | |
7 | MA Y, GUO M M, TIAN Y, et al. Recent advances and prospects in hypersonic inlet design and intelligent optimization[J]. Aerospace Science and Technology, 2024, 146: 108953. |
8 | 李永洲, 张堃元, 王磊, 等. 马赫数分布可控的基准流场灵敏度分析与优化设计[J]. 航空动力学报, 2013, 28(4): 765-774. |
LI Y Z, ZHANG K Y, WANG L, et al. Sensitivity analysis and optimization design of basic flowfield with controllable Mach number distribution[J]. Journal of Aerospace Power, 2013, 28(4): 765-774 (in Chinese). | |
9 | 王骥飞, 蔡晋生, 段焰辉. 高超声速内收缩进气道分步优化设计方法[J]. 航空学报, 2015, 36(12): 3759-3773. |
WANG J F, CAI J S, DUAN Y H. Multistage optimization design method of hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12): 3759-3773 (in Chinese). | |
10 | 高琨鹏, 陈兵, 徐旭. 基于PNS算法的高超声速内转式进气道优化设计[J]. 推进技术, 2017, 38(5): 998-1007. |
GAO K P, CHEN B, XU X. Optimization design of hypersonic inward turning inlet based on SSPNS algorithm[J]. Journal of Propulsion Technology, 2017, 38(5): 998-1007 (in Chinese). | |
11 | XIONG B, FAN X Q, WANG Y. Parameterization and optimization design of a hypersonic inward turning inlet[J]. Acta Astronautica, 2019, 164: 130-141. |
12 | 冯茜, 李擎, 全威, 等. 多目标粒子群优化算法研究综述[J]. 工程科学学报, 2021, 43(6): 745-753. |
FENG Q, LI Q, QUAN W, et al. Overview of multiobjective particle swarm optimization algorithm[J]. Chinese Journal of Engineering, 2021, 43(6): 745-753 (in Chinese). | |
13 | TAYLOR T, VANWIE D. Performance analysis of hypersonic shape-changing inlets derived from morphing streamline traced flowpaths: AIAA-2008- 2635[R]. Reston: AIAA, 2008. |
14 | DRAYNA T, NOMPELIS I, CANDLER G. Hypersonic inward turning inlets: Design and optimization: AIAA-2006-0297[R]. Reston: AIAA, 2006. |
15 | 陈栋梁. 流线追踪Busemann进气道粘性修正方法研究[D]. 长沙: 国防科技大学, 2009. |
CHEN D L. Study on viscosity correction method of Busemann inlet with streamline tracking[D].Changsha: National University of Defense Technology, 2009 (in Chinese). | |
16 | 王仁杰. 超/高超声速进气道高效优化方法及应用研究[D]. 南京: 南京航空航天大学, 2019. |
WANG R J. Study on efficient optimization method and application of supersonic/hypersonic inlet[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
17 | KLINE H L, PALACIOS F, ECONOMON T D, et al. Adjoint-based optimization of a hypersonic inlet: AIAA-2015-3060[R]. Reston: AIAA, 2015. |
18 | 黄河峡, 谭慧俊, 庄逸, 等. 高超声速进气道/隔离段内流特性研究进展[J]. 推进技术, 2018, 39(10): 2252-2273. |
HUANG H X, TAN H J, ZHUANG Y, et al. Progress in internal flow characteristics of hypersonic inlet/isolator[J]. Journal of Propulsion Technology, 2018, 39(10): 2252-2273 (in Chinese). | |
19 | LI Y M, LI Z F, YANG J M. Tomography-like flow visualization of a hypersonic inward-turning inlet[J]. Chinese Journal of Aeronautics, 2021, 34(1): 44-49. |
20 | 王晓峰, 屈峰, 付俊杰, 等. 基于离散伴随的高超内转式进气道气动优化设计[J]. 航空学报, 2023, 44(19): 51-67. |
WANG X F, QU F, FU J J, et al. Discrete adjoint-based aerodynamic design optimization for hypersonic inward turning inlet[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 51-67 (in Chinese). | |
21 | QU F, WANG T Y, LIU C Y, et al. Aerodynamic shape optimization of the vortex-shock integrated waverider over a wide speed range[J]. Aerospace Science and Technology, 2023, 143: 108696. |
22 | 刘超宇, 屈峰, 孙迪, 等. 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报, 2023, 44(4): 64-82. |
LIU C Y, QU F, SUN D, et al. Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(4): 64-82 (in Chinese). | |
23 | ZINGG D W, NEMEC M, PULLIAM T H. A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization[J]. European Journal of Computational Mechanics, 2008, 17(1-2): 103-126. |
24 | LYU Z J, XU Z L, MARTINS J. Benchmarking optimization algorithms for wing aerodynamic design optimization[C]∥Proceedings of the 8th International Conference on Computational Fluid Dynamics. Chengdu: University of Michigan, 2014. |
25 | SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]∥Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1986. |
26 | LUKE E, COLLINS E, BLADES E. A fast mesh deformation method using explicit interpolation[J]. Journal of Computational Physics, 2012, 231(2): 586-601. |
27 | GILL P E, MURRAY W, SAUNDERS M A. SNOPT: An SQP algorithm for large-scale constrained optimization[J]. SIAM Review, 2005, 47(1): 99-131. |
28 | 王丹. 飞行器气动外形优化设计方法研究与应用[D]. 西安: 西北工业大学, 2015. |
WANG D. Research and application of aircraft aerodynamic shape optimization design method[D].Xi’an: Northwestern Polytechnical University, 2015 (in Chinese). | |
29 | DEB K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2-4): 311-338. |
30 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
31 | 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安: 西北工业大学, 2016. |
CHEN S. Gradient-based aerodynamic shape optimization design method and its application[D]. Xi’an: Northwestern Polytechnical University, 2016 (in Chinese). | |
32 | NADARAJAH S, JAMESON A. A comparison of the continuous and discrete adjoint approach to automatic aerodynamic optimization: AIAA-2000-0667[R]. Reston: AIAA, 2000. |
33 | PUYERO A, ZINGG D, PUYERO A, et al. An efficient Newton-GMRES solver for aerodynamic computations: AIAA-1997-1955[R]. Reston: AIAA, 1997. |
34 | MARTA A C, MADER C A, MARTINS J R R A, et al. A methodology for the development of discrete adjoint solvers using automatic differentiation tools[J]. International Journal of Computational Fluid Dynamics, 2007, 21(9-10): 307-327. |
35 | 李永洲, 张堃元, 朱伟, 等. 双弯曲入射激波的可控中心体内收缩基准流场设计[J]. 航空动力学报, 2015, 30(3): 563-570. |
LI Y Z, ZHANG K Y, ZHU W, et al. Design for inward turning basic flowfield with controlled center body and two incident curved shock waves[J]. Journal of Aerospace Power, 2015, 30(3): 563-570 (in Chinese). | |
36 | 卫锋, 贺旭照, 贺元元, 等. 三维内转式进气道双激波基准流场的设计方法[J]. 推进技术, 2015, 36(3): 358-364. |
WEI F, HE X Z, HE Y Y, et al. Design method of dual-shock wave basic flow-field for inward turning inlet[J]. Journal of Propulsion Technology, 2015, 36(3): 358-364 (in Chinese). | |
37 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows: AIAA-1992-0439[R]. Reston: AIAA, 1992. |
38 | JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(7): 929-935. |
39 | GROPP W, KEYES D, MCINNES L C, et al. Globalized newton-krylov-schwarz algorithms and software for parallel implicit CFD[J]. The International Journal of High Performance Computing Applications, 2000, 14(2): 102-136. |
40 | 钟亚飞, 马宏伟, 郭君德, 等. 航空发动机进气总压畸变地面试验数据处理方法综述[J]. 航空发动机, 2021, 47(1): 72-85. |
ZHONG Y F, MA H W, GUO J D, et al. Review of ground test data processing method of aeroengine inlet total pressure distortion[J]. Aeroengine, 2021, 47(1): 72-85 (in Chinese). | |
41 | KNOWLES J. ParEGO: A hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(1): 50-66. |
42 | 王晨曦, 谭慧俊, 张启帆, 等. 高超声速进气道低马赫数不起动和再起动试验[J]. 航空学报, 2017, 38(11): 38-49. |
WANG C X, TAN H J, ZHANG Q F, et al. Test of low Mach number unstart and restart processes of hypersonic inlet[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 38-49 (in Chinese). | |
43 | 李永洲, 张堃元, 孙迪. 马赫数可控的方转圆高超声速内收缩进气道试验研究[J]. 航空学报, 2016, 37(10): 2970-2979. |
LI Y Z, ZHANG K Y, SUN D. Experimental investigation on a hypersonic inward turning inlet of rectangular-to-circular shape with controlled Mach number distribution[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 2970-2979 (in Chinese). |
/
〈 |
|
〉 |