ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Numerical simulation of primary atomization for dual-stage swirl airblast atomizer
Received date: 2024-04-23
Revised date: 2024-04-30
Accepted date: 2024-07-08
Online published: 2024-08-05
Supported by
National Science and Technology Major Project(J2019-III-0005-0048);National Natural Science Foundation of China(91941301)
The current research on the dual-stage swirl airblast atomizer is primarily experimental and cannot explain the atomization mechanism and evolution process. To master the fuel mixing and distribution characteristics of the dual-stage swirl airblast atomizer, and clarify the atomization mechanism of fuel jets under different combustion chamber inflow conditions, RANS turbulence model coupled with VOF and VOF-to-DPM model were adopted in this paper. Combined with adaptive grid technology, the numerical simulation of primary atomization in the whole fluid domain, including fuel fluid domain and air fluid domain, was carried out. The process of liquid film formation on the pressure swirl atomizer and the wall of the Venturi tube and the process of breaking into filaments and droplets were successfully captured in the results. Compared with the experimental results, the maximum error of spray angle is only 1.34%, and the breakup length of liquid film at the outlet is consistently 0.8 mm, which verifies the correctness of the simulation results. The atomization characteristics of the pressure swirl atomizer with and without swirling air were compared and analyzed. It was found that the primary swirling air will cause periodic oscillation of liquid film at the outlet of the pressure swirl atomizer which can increase the spray angle and shorten the breakup length. However, it also increases the liquid film thickness, thereby reducing the velocity of liquid film at the outlet of the pressure swirl atomizer. The effects of air pressure drop, inlet pressure and temperature, and fuel flow rate on spray angle and Sauter Mean Diameter (SMD) of the dual-stage swirl airblast atomizer were analyzed. The results show that as the air pressure drop across the swirler increases, the spray angle increases, and SMD decreases. As the inlet pressure and temperature increase, the spray angle increases and then tends to balance, and SMD decreases first, then increases and finally decreases. Additionally, as the fuel flow rate increases, the spray angle increases first and then decreases, and SMD shows a decreasing trend. In this paper, the numerical simulation of the dual-stage swirl airblast atomizer in the whole fluid domain is developed, providing theoretical support for a better understanding of the evolution process and atomization mechanism of this type of atomizer.
Yunxia YOU , Zhouqin FAN , Weiqiang CHEN , Cheng CAO , Fanfu KONG . Numerical simulation of primary atomization for dual-stage swirl airblast atomizer[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(S1) : 730579 -730579 . DOI: 10.7527/S1000-6893.2024.30579
1 | 严红, 陈福振. 航空发动机燃油雾化特性研究进展[J]. 推进技术, 2020, 41(9): 2038-2058. |
YAN H, CHEN F Z. Review on fuel atomization in aeroengine[J]. Journal of Propulsion Technology, 2020, 41(9): 2038-2058 (in Chinese). | |
2 | 陈溯敏, 姜磊, 王博涵, 等. 旋流杯结构对火焰筒头部流场影响的试验研究[J]. 燃气轮机技术, 2020, 33(4): 7-16. |
CHEN S M, JIANG L, WANG B H, et al. Effects of swirl cup structure on the flow field of combustor[J]. Gas Turbine Technology, 2020, 33(4): 7-16 (in Chinese). | |
3 | 桂韬, 夏丽敏, 邱伟, 等. 旋流器型式对空气雾化喷嘴雾化特性影响规律[J]. 航空动力学报, 2022, 37(3): 465-477. |
GUI T, XIA L M, QIU W, et al. Effect of swirler types on spray characteristics of airblast atomizer[J]. Journal of Aerospace Power, 2022, 37(3): 465-477 (in Chinese). | |
4 | LIU C X, LIU F Q, YANG J H, et al. Experimental investigation of spray and combustion performances of a fuel-staged low emission combustor: Effects of main swirl angle[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(12): 121502. |
5 | RAJAMANICKAM K, POTNIS A, KUMAR S, et al. On the dynamics of sprays in complex gas turbine swirl injectors[J]. Experiments in Fluids, 2020, 61(2): 39. |
6 | ATESHKADI A, MCDONELL V G, SAMUELSEN G S. Effect of hardware geometry on gas and drop behavior in a radial mixer spray[J]. Symposium (International) on Combustion, 1998, 27(2): 1985-1992. |
7 | FANG C Y, LIU Y S, WANG S L, et al. Aerodynamic effect on atomization characteristics in a swirl cup airblast fuel injector[J]. Physics of Fluids, 2023, 35(10): 103319. |
8 | SHANMUGADAS K P, MANUPRASAD E S, CHIRANTHAN R N, et al. Fuel placement and atomization inside a gas-turbine fuel injector at realistic operating conditions[J]. Proceedings of the Combustion Institute, 2021, 38(2): 3261-3268. |
9 | IM K S, KIM H, LAI M C, et al. Parametric study of the swirler/venturi spray injectors[J]. Journal of Propulsion and Power, 2001, 17(3): 717-727. |
10 | 徐华胜, 黄义勇, 王秀兰. 喷嘴供油特性对双涡流器头部气动雾化效果的影响研究[J]. 燃气涡轮试验与研究, 2004, 17(2): 14-17, 28. |
XU H S, HUANG Y Y, WANG X L. Study on the effect of fuel jet characteristics on airblast atomization performance for device with two-stage swirler[J]. Gas Turbine Experiment and Research, 2004, 17(2): 14-17, 28 (in Chinese). | |
11 | 王志凯, 陈盛, 刘冉, 等. 双级轴向旋流杯气量比对雾化性能影响的试验[J]. 航空动力学报, 2019, 34(12): 2656-2662. |
WANG Z K, CHEN S, LIU R, et al. Experiment on effects of airflow ratio on spray characteristics of dual-axial swirl cup[J]. Journal of Aerospace Power, 2019, 34(12): 2656-2662 (in Chinese). | |
12 | 吴施志, 王志凯, 石小祥, 等. 文氏管出口张角对旋流杯性能的影响研究[J]. 推进技术, 2020, 41(8): 1756-1764. |
WU S Z, WANG Z K, SHI X X, et al. Effects of venturi divergence angle on characteristics of swirl cup[J]. Journal of Propulsion Technology, 2020, 41(8): 1756-1764 (in Chinese). | |
13 | 郭新华, 林宇震, 张驰, 等. 离心式同向双旋流器空气雾化喷嘴雾化特性研究[J]. 航空动力学报, 2009, 24(10): 2249-2254. |
GUO X H, LIN Y Z, ZHANG C, et al. Experiment investigation on atomization characteristic of an air-blast atomizer with centrifugal nozzle and co-dual-swirl cup[J]. Journal of Aerospace Power, 2009, 24(10): 2249-2254 (in Chinese). | |
14 | 张弛, 张荣伟, 徐国强, 等. 直射式双旋流空气雾化喷嘴的雾化效果[J]. 航空动力学报, 2006, 21(5): 805-809. |
ZHANG C, ZHANG R W, XU G Q, et al. Experimental investigation on atomization of an air-blast atomizer with plain-orifice nozzle and dual-swirl cup[J]. Journal of Aerospace Power, 2006, 21(5): 805-809 (in Chinese). | |
15 | 袁怡祥, 林宇震, 刘高恩. 旋流杯燃烧室头部流场与喷雾对贫油熄火的影响[J]. 航空动力学报, 2004, 19(3): 332-337. |
YUAN Y X, LIN Y Z, LIU G E. The effect of flow field and fuel spray of combustor with swirl cup on lean blowout limit at idle condition[J]. Journal of Aerospace Power, 2004, 19(3): 332-337 (in Chinese). | |
16 | 王金铎, 惠鑫, 武济泓, 等. 双级轴向旋流器设计参数对燃烧室点火性能影响规律[J]. 航空动力学报, 2022, 37(11): 2544-2552. |
WANG J D, HUI X, WU J H, et al. Effects of design parameters of two-stage axial swirler on combustor ignition performance[J]. Journal of Aerospace Power, 2022, 37(11): 2544-2552 (in Chinese). | |
17 | 陈溯敏, 姜磊, 王彤, 等. 旋流杯结构对燃油雾化粒径的影响[J]. 航空动力学报, 2021, 36(12): 2568-2577. |
CHEN S M, JIANG L, WANG T, et al. Effects of swirl cup structure on fuel atomization particle size of fuel[J]. Journal of Aerospace Power, 2021, 36(12): 2568-2577 (in Chinese). | |
18 | 高亚平. 复杂旋流通道内气动结构参数对预膜空气雾化机理的影响研究[D]. 镇江: 江苏大学, 2022: 22-35. |
GAO Y P. Study on the influence of aerodynamic structure parameters in complex swirl channel on the atomization mechanism of prefilming air[D]. Zhenjiang: Jiangsu University, 2022: 22-35 (in Chinese). | |
19 | 周瑜, 黄渊, 陈伟强, 等. 高空来流条件下航空发动机双旋流燃烧室点火特性数值模拟[J]. 推进技术, 2022, 43(9): 305-313. |
ZHOU Y, HUANG Y, CHEN W Q, et al. Numerical simulation of ignition characteristics of aeroengine combustor with two-stage swirler under high-altitude inflow conditions[J]. Journal of Propulsion Technology, 2022, 43(9): 305-313 (in Chinese). | |
20 | 徐榕, 程明, 赵坚行, 等. 旋流杯燃烧室流场的数值与试验研究[J]. 工程热物理学报, 2010, 31(4): 701-704. |
XU R, CHENG M, ZHAO J X, et al. Numerical and experimental study of flow fields in a swirl cup gas turbine combustor[J]. Journal of Engineering Thermophysics, 2010, 31(4): 701-704 (in Chinese). | |
21 | 于浩洋, 刘爱虢, 陈思, 等. 结构参数对气动雾化喷嘴雾化特性影响研究[J]. 沈阳航空航天大学学报, 2020, 37(5): 1-9. |
YU H Y, LIU A G, CHEN S, et al. Influence of structural parameters on the atomization characteristics of air-assisted atomizer[J]. Journal of Shenyang Aerospace University, 2020, 37(5): 1-9 (in Chinese). | |
22 | 刘静. 超声速气流中横向燃油喷雾的数值模拟和实验研究[D]. 北京: 北京航空航天大学, 2010: 21-42. |
LIU J. Numerical simulation and experimental study on transverse fuel spray in supersonic airflow[D]. Beijing: Beihang University, 2010: 21-42 (in Chinese). | |
23 | 刘娟. 旋转锥形液膜破碎过程实验与仿真研究[D]. 长沙: 国防科技大学, 2012: 32-35. |
LIU J. Experimental and simulation study on the crushing process of rotating conical liquid film[D].Changsha: National University of Defense Technology, 2012: 32-35 (in Chinese). | |
24 | 王雷, 方斌, 王光彩. 基于大涡模拟的离心式喷嘴雾化过程研究[J]. 推进技术, 2021, 42(8): 1855-1864. |
WANG L, FANG B, WANG G C. Process of pressure swirl nozzle atomization based on large eddy simulation[J]. Journal of Propulsion Technology, 2021, 42(8): 1855-1864 (in Chinese). |
/
〈 |
|
〉 |