Electronics and Electrical Engineering and Control

Design of guidance law with precise impact angle and time control

  • Wei DONG ,
  • Xin YI ,
  • Houjun ZHANG ,
  • Chunyan WANG ,
  • Fang DENG
Expand
  • 1.National Key Lab of Autonomous Intelligent Unmanned Systems,Beijing Institute of Technology,Beijing 100081,China
    2.School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
    3.Beijing System Design Institute of Electro-Mechanic Engineering,Beijing 100083,China
    4.Advanced Technology Research Institute,Beijing Institute of Technology,Jinan 250300,China
    5.Chongqing Innovation Center,Beijing Institute of Technology,Chongqing 401120,China

Received date: 2024-06-04

  Revised date: 2024-06-24

  Accepted date: 2024-07-19

  Online published: 2024-07-23

Supported by

National Science Fund for Distinguished Young Scholars(62025301);National Natural Science Foundation of China(62373055);Postdoctoral Innovative Talents Support Program(BX20230461);China Postdoctoral Science Foundation(2023M740249)

Abstract

Spatial-temporal constrained guidance is a method that simultaneously meets impact angle and time constraints. To address the problem of missile terminal guidance, a spatial-temporal constrained guidance law with precise control capability is designed in this paper. First, based on the time-to-go estimation of the optimal impact angle constrained guidance law, a varying-gain impact angle constrained guidance law whose time-to-go can be precisely predicted is inversely derived without any small angle approximation. Second, an impact-time error feedback term is added to the above guidance law to obtain the singularity-free spatial-temporal guidance law for simultaneous precise control of impact angle and time. Third, by introducing the remaining trajectory length as an independent variable, the proposed spatial-temporal guidance law is extended to practical scenarios with missile speed variation. Finally, the effectiveness and advantages of the proposed guidance law are verified through several numerical simulations.

Cite this article

Wei DONG , Xin YI , Houjun ZHANG , Chunyan WANG , Fang DENG . Design of guidance law with precise impact angle and time control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(4) : 330787 -330787 . DOI: 10.7527/S1000-6893.2024.30787

References

1 RATNOO A, GHOSE D. Impact angle constrained interception of stationary targets[J]. Journal of Guidance, Control, and Dynamics200831(6): 1817-1822.
2 SEO M G, LEE C H, TAHK M J. New design methodology for impact angle control guidance for various missile and target motions[J]. IEEE Transactions on Control Systems Technology201826(6): 2190-2197.
3 黎克波, 廖选平, 梁彦刚, 等. 基于纯比例导引的拦截碰撞角约束制导策略[J]. 航空学报202041(S2): 724277.
  LI K B, LIAO X P, LIANG Y G, et al. Guidance strategy with impact angle constraint based on pure proportional navigation[J]. Acta Aeronautica et Astronautica Sinica202041(S2): 724277 (in Chinese).
4 KIM J, CHO N, KIM Y. Field-of-view-constrained impact angle control guidance with error convergence before interception considering speed changes[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2021235(2): 238-256.
5 刘子超, 王江, 何绍溟, 等. 基于预测校正的落角约束计算制导方法[J]. 航空学报202243(8): 325443.
  LIU Z C, WANG J, HE S M, et al. A computational guidance algorithm for impact angle control based on predictor-corrector concept[J]. Acta Aeronautica et Astronautica Sinica202243(8): 325443 (in Chinese).
6 HE S M, LEE C H. Optimality of error dynamics in missile guidance problems[J]. Journal of Guidance, Control, and Dynamics201841(7): 1624-1633.
7 李晨迪, 王江, 李斌, 等. 过虚拟交班点的能量最优制导律[J]. 航空学报201940(12): 323249.
  LI C D, WANG J, LI B, et al. Energy-optimal guidance law with virtual hand-over point[J]. Acta Aeronautica et Astronautica Sinica201940(12): 323249 (in Chinese).
8 JI H B, LIU X D, SONG Z Y, et al. Time-varying sliding mode guidance scheme for maneuvering target interception with impact angle constraint[J]. Journal of the Franklin Institute2018355(18): 9192-9208.
9 盛永智, 甘佳豪, 张成新. 弹道可调的落角约束分数阶滑模制导律设计[J]. 航空学报202344(7): 327073.
  SHENG Y Z, GAN J H, ZHANG C X. Fractional order sliding mode guidance law design with trajectory adjustable and terminal angular constraint[J]. Acta Aeronautica et Astronautica Sinica202344(7): 327073 (in Chinese).
10 JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology200614(2): 260-266.
11 CHO N, KIM Y. Modified pure proportional navigation guidance law for impact time control[J]. Journal of Guidance, Control, and Dynamics201639(4): 852-872.
12 DONG W, WANG C Y, WANG J N, et al. Varying-gain proportional navigation guidance for precise impact time control[J]. Journal of Guidance, Control, and Dynamics202346(3): 535-552.
13 TEKIN R, ERER K S, HOLZAPFEL F. Impact time control with generalized-polynomial range formulation[J]. Journal of Guidance, Control, and Dynamics201841(5): 1190-1195.
14 刘远贺, 黎克波, 何绍溟, 等. 基于最优误差动力学的变速导弹飞行路程控制制导律[J]. 航空学报202344(7): 326909.
  LIU Y H, LI K B, HE S M, et al. Flying range control guidance for varying-speed missiles based on optimal error dynamics[J]. Acta Aeronautica et Astronautica Sinica202344(7): 326909 (in Chinese).
15 LEE J I, JEON I S, TAHK M J. Guidance law to control impact time and angle[J]. IEEE Transactions on Aerospace and Electronic Systems200743(1): 301-310.
16 ZHANG Y A, MA G X, LIU A L. Guidance law with impact time and impact angle constraints[J]. Chinese Journal of Aeronautics201326(4): 960-966.
17 张春妍, 宋建梅, 侯博, 等. 带落角和时间约束的网络化导弹协同制导律[J]. 兵工学报201637(3): 431-438.
  ZHANG C Y, SONG J M, HOU B, et al. Cooperative guidance law with impact angle and impact time constraints for networked missiles[J]. Acta Armamentarii201637(3): 431-438 (in Chinese).
18 CHEN X T, WANG J Z. Optimal control based guidance law to control both impact time and impact angle[J]. Aerospace Science and Technology201984: 454-463.
19 SONG J H, SONG S M, XU S L. Three-dimensional cooperative guidance law for multiple missiles with finite-time convergence[J]. Aerospace Science and Technology201767: 193-205.
20 ZHANG S, GUO Y, LIU Z G, et al. Finite-time cooperative guidance strategy for impact angle and time control[J]. IEEE Transactions on Aerospace and Electronic Systems202157(2): 806-819.
21 YOU H, CHANG X L, ZHAO J F, et al. Three-dimensional impact-angle-constrained cooperative guidance strategy against maneuvering target[J]. ISA Transactions2023138: 262-280.
22 ZHOU C, YAN X D, BAN H H, et al. Generalized-newton-iteration-based MPSP method for terminal constrained guidance[J]. IEEE Transactions on Aerospace and Electronic Systems202359(6): 9438-9450.
23 TAN M H, SHEN H. Three-dimensional cooperative game guidance law for a leader-follower system with impact angles constraint[J]. IEEE Transactions on Aerospace and Electronic Systems202460(1): 405-420.
24 WANG P Y, LEE C H, LIU Y H, et al. Nonlinear three-dimensional guidance for impact time and angle control with field-of-view constraint[J]. IEEE Transactions on Aerospace and Electronic Systems202460(1): 264-279.
25 WANG C Y, WANG W L, DONG W, et al. Multiple-stage spatial-temporal cooperative guidance without time-to-go estimation[J]. Chinese Journal of Aeronautics202437(9): 399-416.
26 HARL N, BALAKRISHNAN S N. Impact time and angle guidance with sliding mode control[J]. IEEE Transactions on Control Systems Technology201220(6): 1436-1449.
27 KANG S, TEKIN R, HOLZAPFEL F. Generalized impact time and angle control via look-angle shaping[J]. Journal of Guidance, Control, and Dynamics201842(3): 695-702.
28 KIM T H, LEE C H, JEON I S, et al. Augmented polynomial guidance with impact time and angle constraints[J]. IEEE Transactions on Aerospace and Electronic Systems201349(4): 2806-2817.
29 HOU L B, LUO H W, SHI H, et al. An optimal geometrical guidance law for impact time and angle control[J]. IEEE Transactions on Aerospace and Electronic Systems202359(6): 9821-9830.
30 HU Q L, HAN T, XIN M. New impact time and angle guidance strategy via virtual target approach[J]. Journal of Guidance, Control, and Dynamics201841(8): 1755-1765.
31 WANG C Y, YU H S, DONG W, et al. Three-dimensional impact angle and time control guidance law based on two-stage strategy[J]. IEEE Transactions on Aerospace and Electronic Systems202258(6): 5361-5372.
32 WANG C Y, DONG W, WANG J N, et al. Impact-angle-constrained cooperative guidance for salvo attack[J]. Journal of Guidance, Control, and Dynamics202245(4): 684-703.
33 TEKIN R. Augmented plane pursuit for impact-angle control in three dimensions[J]. Journal of Guidance, Control, and Dynamics202245(9): 1769-1775.
34 李斌, 林德福, 何绍溟, 等. 基于最优误差动力学的时间角度控制制导律[J]. 航空学报201839(11): 322215.
  LI B, LIN D F, HE S M, et al. Time and angle control guidance law based on optimal error dynamics[J]. Acta Aeronautica et Astronautica Sinica201839(11): 322215 (in Chinese).
35 CHEN Y, WU S F, WANG X L. Impact time and angle control optimal guidance with field-of-view constraint[J]. Journal of Guidance, Control, and Dynamics202245(12): 2369-2378.
36 CHEN X T, WANG J Z. Sliding-mode guidance for simultaneous control of impact time and angle[J]. Journal of Guidance, Control, and Dynamics201942(2): 394-401.
Outlines

/