ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Adaptive batch matching decision method for carrier-based aircraft support operations
Received date: 2024-04-28
Revised date: 2024-05-20
Accepted date: 2024-06-20
Online published: 2024-07-12
Supported by
National Natural Science Foundation of China(62372416);Henan Natural Science Foundation(242300421215);National Key Research and Development Program of China(2021YFB3301504)
The key indicator for measuring the combat performance of an aircraft carrier is the sortie rate of carrier-based aircraft, which depends on the support station matching strategy of carrier-based aircraft. Existing works mainly use sequence matching and batch matching methods to match suitable stations for carrier-based aircraft. However, both methods have certain limitations, and it is difficult for the methods to ensure both real-timeliness and quality of station matching at the same time. Facing the complex and time-varying support environment, it becomes extremely difficult to determine a reasonable support operation matching strategy. In this paper, we propose a novel adaptive batch matching decision-making method for carrier-based aircraft support operations based on the batch matching method. First, the optimal time window division strategy is solved by constructing a reinforcement learning method for multi-dimensional environmental state encoding. Then, a highly efficient batch matching algorithm is applied within each time window to find the best matching solution for support operations and support stations. The results of multiple sets of simulation experiments based on the publicly available Nimitz aircraft carrier data show that our proposed method can effectively respond to dynamic changes in the support environment, and can quickly solve high-quality support operation assignment plans while meeting real-time requirements.
Guang LIU , Hua WANG , Youfang LIN , Shuo HE , Yafei LI , Mingliang XU . Adaptive batch matching decision method for carrier-based aircraft support operations[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(1) : 330615 -330615 . DOI: 10.7527/S1000-6893.2024.30615
1 | 夏国清, 陈红召, 王元慧. 基于闭排队网络的飞机出动架次率分析[J]. 系统工程学报, 2011, 26(5): 686-693. |
XIA G Q, CHEN H Z, WANG Y H. Analysis of aircraft sortie generation rate based on closed queueing network model[J]. Journal of System Engineering, 2011, 26(5): 686-693 (in Chinese). | |
2 | ZHAO Y, ZHENG K, YIN H Z, et al. Preference-aware task assignment in spatial crowdsourcing: From individuals to groups[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(7): 3461-3477. |
3 | 伍国华, 王天宇. 基于自适应模拟退火的大规模星座测控资源调度算法[J]. 航空学报, 2023, 44(12): 327759. |
WU G H, WANG T Y. Large-scale constellation TT & C resource scheduling algorithm based on adaptive simulated annealing[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 327759 (in Chinese). | |
4 | LI Y F, WU Q S, HUANG X, et al. Efficient adaptive matching for real-time city express delivery[J].IEEE Transactions on Knowledge and Data Engineering, 2023, 35(6): 5767-5779. |
5 | WU Q S, LI Y F, LI H L, ZHANG D, ZHU G L. AMRAS: A visual analysis system for spatial crowdsourcing[J]. Proceedings of the VLDB Endowment,2022, 15(12): 3690-3693. |
6 | 朱云冲, 梁彦刚, 黎克波, 等. 基于PSO和RRT的智能弹群任务分配算法[J]. 航空学报, 2023, 44(S1): 727354. |
ZHU Y C, LIANG Y G, LI K B, et al. Task assignment algorithm for intelligent missile swarm based on PSO and RRT[J]. Acta Aeronautica et Astronautica Sinica, 2023,44(S1): 727354 (in Chinese). | |
7 | ABBEEL P. Apprenticeship learning and reinforcement learning with application to robotic control[D]. Stanford: Stanford University, 2008. |
8 | MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518: 529-533. |
9 | 刘广, 颜世伟, 李海旭, 等. 国外航母航空保障技术发展现状[J]. 航空科学技术, 2020, 31(2): 1-11. |
LIU G, YAN S W, LI H X, et al. Aviation support technology development for foreign aircraft carrier[J]. Aeronautical Science & Technology, 2020, 31(2): 1-11 (in Chinese). | |
10 | JOHNSTON J, SWENSON E. A persistent monitoring system to reduce navy aircraft carrier flight deck mishaps[C]∥AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2009: 5647. |
11 | JOHNSTON J S. A feasibility study of a persistent monitoring system for the flight deck of U.S. navy aircraft carriers[D]. Ohio: Air Force Institute of Technology, 2009. |
12 | RYAN J, CUMMINGS M, ROY N, et al. Designing an interactive local and global decision support system for aircraft carrier deck scheduling[C]∥Proceedings of the AIAA Information Technology. Reston: AIAA, 2011. |
13 | 刘东, 吴家仁, 周一舟, 等. 舰载机综合保障技术实践及发展展望[J]. 航空学报, 2021, 42(8): 525802. |
LIU D, WU J R, ZHOU Y Z, et al. Practice and prospects of comprehensive support technologies of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525802 (in Chinese). | |
14 | 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报, 2020, 41(6): 524377. |
YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(6): 524377-524377 (in Chinese). | |
15 | 周晓光, 赵仁厚, 王述运, 等. 飞行甲板作业对大型舰船舰载机出动架次影响分析[J]. 系统仿真学报, 2014, 26(10): 2447-2451. |
ZHOU X G, ZHAO R H, WANG S Y, et al. Research on influence of flight deck operation exerts upon sortie generation of carrier-based aircraft [J]. Journal of System Simulation, 2014, 26(10): 2447-2451 (in Chinese). | |
16 | 董文洪, 潘科, 潘宣宏, 等. 基于马尔科夫状态转移过程的舰载机出动能力分析[J]. 舰船电子工程, 2018, 38(5): 111-114, 129. |
DONG W H, PAN K, PAN X H, et al. Sortie generation capacity of shipboard aircraft based on the Markov state transition[J]. Ship Electronic Engineering, 2018, 38(5): 111-114, 129 (in Chinese). | |
17 | 谢君, 廖松, 石章松. 大型舰船作战部署中的舰载机出动规划模型[J]. 系统工程与电子技术, 2019, 42(1): 128-132. |
XIE J, LIAO S, SHI Z S. Programming model of flight sortie for an aircraft carrier in transit[J]. Systems Engineering and Electronics, 2019, 42(1): 128-132 (in Chinese). | |
18 | ZHANG Z, LIN S, DONG R, et al. Designing a human-computer cooperation decision planning system for aircraft carrier deck scheduling[C]∥AIAA Infotech@ Aerospace. Reston: AIAA, 2015. |
19 | 张洪涛, 崔珊珊, 刘广, 等. 机群保障资源配置建模与优化研究[J]. 系统工程理论与实践, 2015, 35(4): 1019-1026. |
ZHANG H T, CUI S S, LIU G, et al. Resource scheduling for air fleet operations[J]. Systems Engineering-Theory & Practice, 2015, 35(4): 1019-1026 (in Chinese). | |
20 | 钟涛, 萧卫, 徐宏云, 等. 带准备时间的单机调度问题的混合进化算法研究[J]. 计算机应用研究, 2013, 30(11): 3248-3252. |
ZHONG T, XIAO W, XU H Y, et al. Hybrid evolutionary algorithm for solving single-machine scheduling problem with setup times[J]. Application Research of Computers, 2013, 30(11): 3248-3252 (in Chinese). | |
21 | 韩维, 苏析超, 陈俊锋. 舰载机多机一体化机务保障调度方法[J]. 系统工程与电子技术, 2015, 37(4): 809-816. |
HAN W, SU X C, CHEN J F. Integrated maintenance support scheduling method of multi-carrier aircrafts[J]. Systems Engineering and Electronics, 2015, 37(4): 809-816 (in Chinese). | |
22 | 苏析超, 韩维, 张勇, 等. 考虑人机匹配模式的舰载机甲板机务勤务保障调度算法[J]. 航空学报, 2018, 39(12): 222314. |
SU X C, HAN W, ZHANG Y, et al. Scheduling algorithm for maintenance and service support of carrier-based aircraft on flight deck with different man-aircraft matching patterns[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 222314 (in Chinese). | |
23 | 谭大力, 王云飞, 于连飞, 等. 基于整数线性规划方法的舰载机航空保障资源优化调度[J]. 中国舰船研究, 2019,14(5): 145-151. |
TAN D L, WANG Y F, YU L F, et al. Optimal scheduling of aviation support resources for carrier based aircrafts based on integer linear programming[J].Chinese Journal of Ship Research, 2019, 14(5): 145-151 (in Chinese). | |
24 | MICHINI B, HOW J. A human-interactive course of action planner for aircraft carrier deck operations[C]∥Proceedings of the AIAA Information Technology. Reston: AIAA, 2011. |
25 | 王文鹏, 邹刚, 张玎, 等. 基于自适应遗传算法的舰载机保障调度[J]. 兵工自动化, 2021, 40(1): 37-42. |
WANG W P, ZOU G, ZHANG D, et al. Support scheduling of carrier-based aircraft based on adaptive genetic algorithm [J]. Ordnance Industry Automation, 2021,40(1): 37-42 (in Chinese). | |
26 | 孟杨凯, 王正, 范加利. 基于禁忌算法对不确定性舰载机保障的调度优化研究[J]. 系统仿真学报, 2021, 33(10): 2363-2371. |
MENG Y K, WANG Z, FAN J L. Scheduling optimization research based on tabu algorithm for uncertainty carrier aircraft support[J]. Journal of System Simulation, 2021, 33(10): 2363-2371 (in Chinese). | |
27 | 朱兴动, 孟杨凯, 黄葵, 等. 基于GA算法的舰载机快速调度[J]. 兵工自动化, 2020, 39(9): 9. |
ZHU X D, MENG Y K, HUANG K, et al. Aircraft fast scheduling based on GA algorithm[J]. Ordnance Industry Automation, 2020, 39(9): 9 (in Chinese). | |
28 | 张少辉, 刘舜, 李亚飞, 等. 航空母舰舰载机弹药保障作业调度优化算法[J]. 航空学报, 2023, 44(20): 228485. |
ZHANG S H, LIU S, LI Y F, et al. Optimization algorithm for ammunition support operation scheduling of carrier-borne aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 228485 (in Chinese). | |
29 | TANG X C, QIN Z T, ZHANG F, et al. A deep value-network based approach for multi-driver order dispatching[C]∥Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 1780-1790. |
30 | LI Y X, ZHENG Y, YANG Q. Cooperative multi-agent reinforcement learning in express system[C]∥Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 805-814. |
31 | CHEN S Y, YU Y, DA Q, et al. Stabilizing reinforcement learning in dynamic environment with application to online recommendation[C]∥Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1187-1196. |
32 | LIN K X, ZHAO R Y, XU Z, et al. Efficient large-scale fleet management via multi-agent deep reinforcement learning[C]∥Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 1774-1783. |
33 | SHAN C H, MAMOULIS N, CHENG R, et al. An end-to-end deep RL framework for task arrangement in crowdsourcing platforms[C]∥2020 IEEE 36th International Conference on Data Engineering (ICDE). Piscataway: IEEE Press, 2020: 49-60. |
34 | KILLIAN J A, BISWAS A, SHAH S, et al. Q-learning Lagrange policies for multi-action restless bandits[C]∥Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 871-881. |
35 | 李亚飞, 吴庆顺, 徐明亮, 等. 基于强化学习的舰载机保障作业实时调度方法[J]. 中国科学: 信息科学, 2021, 51: 247-262. |
LI Y F, WU Q S, XU M L, et al. Real-time scheduling for carrier-borne aircraft support operations: a reinforcement learning approach[J]. Scientia Sinica (Informationis), 2021, 51: 247–262 (in Chinese). | |
36 | 李亚飞, 高磊, 蒿宏杰, 等. 舰载机保障作业人机协同决策方法[J]. 中国科学(信息科学), 2023, 53(12): 2493-2510. |
LI Y F, GAO L, HAO H J, et al. Human-machine collaborative decision-making for carrier aircraft support operations[J]. Scientia Sinica (Informationis), 2023, 53(12): 2493-2510 (in Chinese). | |
37 | 吴靳, 戴明强, 王俊杰, 等. 基于学徒制算法的航母舰载机保障作业调度[J]. 中国舰船研究, 2022, 17(4): 145-154. |
WU J, DAI M Q, WANG J J, et al. Carrier-based aircraft operation support scheduling based on apprenticeship learning algorithm[J]. Chinese Journal of Ship Research, 2022, 17(4): 145-154 (in Chinese). |
/
〈 |
|
〉 |