ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Optimization shape design of capsule-supersonic parachute system based on fusion surrogate strategy
Received date: 2024-04-02
Revised date: 2024-06-06
Accepted date: 2024-06-27
Online published: 2024-07-01
Supported by
National Natural Science Foundation of China(92371201);Natural Science Foundation of Shaanxi Province(2022JC-03)
Supersonic parachutes, as crucial aerodynamic deceleration systems providing drag and stability, directly impact the success of lander missions. The structural parameters of parachutes that meet different aerodynamic performance requirements are often contradictory. To address the issues of structural parameter conflicts in the shape design of Mars parachutes, as well as the errors of lengthy design cycles and high calculation, this study proposes a fusion surrogate optimization strategy for the two-body model of the canopy-capsule system. The fusion surrogate model integrates the advantages of interpolation-based and regression-based surrogate models, and achieves higher prediction accuracy of aerodynamic coefficients under the same sample conditions. By employing the fusion surrogate model to replace the time-consuming Computational Fluid Dynamics (CFD) calculation process, the design cycle can be shortened, and design efficiency can be improved. The two-body model of the capsule- DGB parachute is optimized using a multi-objective genetic algorithm. The results show that the fusion surrogate optimization strategy can balance the drag and stability performance of the canopy, and enhance the overall deceleration capability of the disk-gap-band parachute under structural parameters and aerodynamic constraints, demonstrating good practicality and feasibility. The research findings can provide theoretical reference and technical reserves for the design and development of a new generation of supersonic parachutes for future Mars exploration missions.
Key words: fusion strategy; Mars parachute; optimization design; surrogate model; supersonic
Lulu JIANG , Xin PAN , Wei JIANG , Rui FENG , Gang CHEN . Optimization shape design of capsule-supersonic parachute system based on fusion surrogate strategy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(1) : 630471 -630471 . DOI: 10.7527/S1000-6893.2024.30471
1 | XUE X P, WEN C Y. Review of unsteady aerodynamics of supersonic parachutes[J]. Progress in Aerospace Sciences, 2021, 125: 100728. |
2 | KNACKE T W. Parachute recovery systems design manual: AD-A247666[R]. California: Para Publishing, 1992. |
3 | Ewing E G, Bixby H W, Knacke T W. Recovery system design guide[M]. Washington, D.C.: Department of Defense, Department of the Air Force, Systems Command, Air Force Wright Aeronautical Laboratories, Air Force Flight Dynamics Laboratory, 1978. |
4 | Knacke T W. Technical-historical development of parachutes and their applications since World War I: AIAA-1986-2423[R]. Reston: AIAA, 1986. |
5 | COCKERLL D J, The aerodynamics of parachutes: AGARD-AG-295[R]. Paris: AGARD, 1987. |
6 | DENNIS D R. Recent advances in parachute technology[J]. The Aeronautical Journal, 1983, 87(869): 333-342. |
7 | CRUZ J, LINGARD J. Aerodynamic decelerators for planetary exploration: Past, present, and future: AIAA-2006-6792[R]. Reston: AIAA, 2006. |
8 | 王国辉, 牟宇, 张然, 等. 超声速降落伞工程应用的关键技术研究进展[J]. 宇航总体技术, 2022(2): 1-16. |
WANG G H, MOU Y, ZHANG R, et al. Recent progress in key technology of supersonic parachute application in engineering design[J]. Astronautical System Engineering Technology, 2022,6(2) :1-16. (in Chinese). | |
9 | 高树义, 戈嗣诚, 梁艳. 火星盘缝带伞跨声速风洞试验研究[J]. 中国空间科学技术, 2015, 35(4): 69-75. |
GAO S Y, GE S C, LIANG Y. Research on transonic wind tunnel tests of Mars disk-gap-band parachutes[J]. Chinese Space Science and Technology, 2015, 35(4): 69-75 (in Chinese). | |
10 | 徐欣, 贾贺, 陈雅倩, 等. 织物透气性对火星用降落伞气动特性影响机理[J]. 航空学报, 2022, 43(12), 126289. |
XU X, JIA H, CHEN Y Q, et al. Influence mechanism of fabric permeability of canopy on aerodynamic performance of Mars parachute[J]. Acta aeronauticaet astronautica sinica, 2022, 43(12): 126289 (in Chinese). | |
11 | 荣伟, 陈旭. 火星探测用降落伞研制试验简介[J]. 航天返回与遥感, 2007, 28(1): 12-17. |
RONG W, CHEN X. Resume of the tests about parachute development for Mars exploration mission?[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(1): 12-17 (in Chinese). | |
12 | 于莹潇, 田佳林. 火星探测器降落伞系统综述[J]. 航天返回与遥感, 2007, 28(4): 12-16. |
YU Y X, TIAN J L. Mars explorer’s parachute system overview[J]. Spacecraft Recovery & Remote Sensing, 2007, 28(4): 12-16 (in Chinese). | |
13 | CRUZ J, MINECK R, KELLER D, et al. Wind tunnel testing of various disk-gap-band parachutes: AIAA-2003-2129[R]. Reston: AIAA, 2003. |
14 | WAY D, DESAI P, ENGELUND W, et al. Design and analysis of the drop test vehicle for the Mars exploration rover parachute structural tests: AIAA-2003-2128[R]. Reston: AIAA, 2003. |
15 | TAEGER Y, WITKOWSKI A. A summary of dynamic testing of the Mars exploration rover parachute decelerator system: AIAA-2003-2127[R]. Reston; AIAA, 2003. |
16 | WITKOWSKI A, KANDIS M, ADAMS D S. Mars science laboratory parachute system performance: AIAA-2013- 1277[R]. Reston; AIAA, 2013. |
17 | FALLON E, FALLON E. System design overview of the Mars Pathfinder parachute decelerator subsystem: AIAA-1997-1511[R]. Reston; AIAA, 1997. |
18 | MAYNARD J D, Aerodynamics characteristics of parachutes at Mach numbers from 1.6 to 3: NASA TN D-752[R]. Washington, D.C.: NASA, 1961. |
19 | BRAUN R D, MANNING R M. Mars exploration entry, descent and landing challenges[C]∥2006 IEEE Aerospace Conference. Piscataway: IEEE Press, 2006: 1-18. |
20 | REYNIER P. Survey of aerodynamics and aerothermodynamics efforts carried out in the frame of Mars exploration projects[J]. Progress in Aerospace Sciences, 2014, 70: 1-27. |
21 | REICHENAU D E. Aerodynamic characteristics of disk-gap-band parachutes in the wake of viking entry forebodies at Mach numbers from 0.2 to 2.6:AEDC-TR-72-78[R]. Tennessee: Arnold Engineering Development Center, 1972. |
22 | POTVIN J, KAVANAUGH J, MCQUILLING M W. A second look at geometric porosity as revealed by computational fluid dynamics (CFD): AIAA-2013-1320[R]. Reston: AIAA, 2013 |
23 | 李春鹏, 钱战森, 孙侠生. 远程民机变弯度机翼后缘外形变形矩阵气动设计[J]. 航空学报, 2023, 44(7): 127335. |
LI C P, QIAN Z S, SUN X S. Trailing edge deformation matrix aerodynamic design for long-range civil aircraft variable camber wing[J]. Acta Aeronauticaet Astronautica Sinica, 2023, 44(7): 127335 (in Chinese). | |
24 | 刘超宇, 屈峰, 孙迪, 等. 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报, 2023, 44(4): 126664. |
LIU C Y, QU F, SUN D, et al. Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider[J]. Acta Aeronau-Ticaet Astronautica Sinica, 2023, 44(4): 126664 (in Chinese). | |
25 | 李润泽, 张宇飞, 陈海昕. 超临界机翼多目标气动优化设计的策略与方法[J]. 航空学报, 2020, 41(5): 623409. |
LI R Z, ZHANG Y F, CHEN H X. Strategies and methods for multi-objective aerodynamic optimization design for supercritical wings[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623409 (in Chinese). | |
26 | 李权, 郭兆电, 雷武涛, 等. 基于工程环境的气动多目标优化设计平台研究[J]. 航空学报, 2016, 37(1): 255-268. |
LI Q, GUO Z D, LEI W T, et al. Engineering environment-based multi-objective optimization platform for aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 255-268 (in Chinese). | |
27 | SENGUPTA A, STELTZNER A, WITKOWSKI A, et al. An overview of the Mars science laboratory parachute decelerator system[C]∥2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-8. |
28 | XUE X P, KOYAMA H, NAKAMURA Y. Numerical simulation of supersonic aerodynamic interaction of a parachute system[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2013, 11: 33-42. |
29 | SHEN G H, XIA Y Q, SUN H R. A 6DOF mathematical model of parachute in Mars EDL[J]. Advances in Space Research, 2015, 55(7): 1823-1831. |
30 | 徐丽, 张开军. 基于HLLC Riemann求解器和重叠网格的三维可压缩粘性流场的计算[J]. 应用力学学报, 2015, 32(6): 1025-1030. |
XU L, ZHANG K J. Calculation of three-dimensional compressible viscous flow field based on HLLC Riemann solver and overlapping grid[J]. Chinese Journal of Applied Mechanics, 2015, 32(6): 1025-1030 (in Chinese). | |
31 | JIANG L L, JIA H, XU X, et al. Numerical study on aerodynamic performance of Mars parachute models with geometric porosities[J]. Space: Science and Technology, 2022, 2022: 9851982. |
32 | JIANG L L, JIA H, XU X, et al. Effect of different geometric porosities on aerodynamic characteristics of supersonic parachutes[J]. Space: Science & Technology, 2023, 3: 0062. |
33 | BARNHARDT M, DRAYNA T, NOMPELIS I, et al. Detached eddy simulations of the MSL parachute at supersonic conditions: AIAA-2007-2529?[R]. Reston: AIAA, 2007. |
34 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225 (in Chinese). | |
35 | MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42(1): 55-61. |
36 | 张德虎, 高正红, 李焦赞, 等. 基于双层代理模型的无人机气动隐身综合设计[J]. 空气动力学学报, 2013, 31(3): 394-400. |
ZHANG D H, GAO Z H, LI J Z, et al. Aerodynamic and stealth synthesis design optimization of UAV based on double-stage metamodel[J]. Acta Aerodynamica Sinica, 2013, 31(3): 394-400 (in Chinese). | |
37 | SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for Computer-based Engineering Design: survey and recommendations[J]. Engineering with Computers, 2001, 17(2): 129-150. |
38 | VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, 10(5): 988-999. |
39 | 韩欣珉, 徐浩军, 尚柏林. 基于支持向量机的轰炸机敏感性权衡优化[J]. 系统工程与电子技术, 2019, 41(11): 2488-2495. |
HAN X M, XU H J, SHANG B L. Tradeoff optimization of bomber susceptibility based on support vector machines[J]. Systems Engineering and Electronics, 2019, 41(11): 2488-2495 (in Chinese). | |
40 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ?[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
/
〈 |
|
〉 |