Special Topic: Flexible Aerodynamic Deceleration Technologies

Optimization shape design of capsule-supersonic parachute system based on fusion surrogate strategy

  • Lulu JIANG ,
  • Xin PAN ,
  • Wei JIANG ,
  • Rui FENG ,
  • Gang CHEN
Expand
  • 1.School of Aerospace Engineering,Xi’an Jiaotong University,Xi’an 710049,China
    2.State Key Laboratory for Strength and Vibration of Mechanical Structures,Xi’an 710049,China
    3.Shannxi Key Laboratory for Environment and Control of Flight Vehicle,Xi’an 710049,China
    4.Beijing Institute of Space Mechanics and Electricity,Beijing 100094,China

Received date: 2024-04-02

  Revised date: 2024-06-06

  Accepted date: 2024-06-27

  Online published: 2024-07-01

Supported by

National Natural Science Foundation of China(92371201);Natural Science Foundation of Shaanxi Province(2022JC-03)

Abstract

Supersonic parachutes, as crucial aerodynamic deceleration systems providing drag and stability, directly impact the success of lander missions. The structural parameters of parachutes that meet different aerodynamic performance requirements are often contradictory. To address the issues of structural parameter conflicts in the shape design of Mars parachutes, as well as the errors of lengthy design cycles and high calculation, this study proposes a fusion surrogate optimization strategy for the two-body model of the canopy-capsule system. The fusion surrogate model integrates the advantages of interpolation-based and regression-based surrogate models, and achieves higher prediction accuracy of aerodynamic coefficients under the same sample conditions. By employing the fusion surrogate model to replace the time-consuming Computational Fluid Dynamics (CFD) calculation process, the design cycle can be shortened, and design efficiency can be improved. The two-body model of the capsule- DGB parachute is optimized using a multi-objective genetic algorithm. The results show that the fusion surrogate optimization strategy can balance the drag and stability performance of the canopy, and enhance the overall deceleration capability of the disk-gap-band parachute under structural parameters and aerodynamic constraints, demonstrating good practicality and feasibility. The research findings can provide theoretical reference and technical reserves for the design and development of a new generation of supersonic parachutes for future Mars exploration missions.

Cite this article

Lulu JIANG , Xin PAN , Wei JIANG , Rui FENG , Gang CHEN . Optimization shape design of capsule-supersonic parachute system based on fusion surrogate strategy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(1) : 630471 -630471 . DOI: 10.7527/S1000-6893.2024.30471

References

1 XUE X P, WEN C Y. Review of unsteady aerodynamics of supersonic parachutes[J]. Progress in Aerospace Sciences2021125: 100728.
2 KNACKE T W. Parachute recovery systems design manual: AD-A247666[R]. California: Para Publishing, 1992.
3 Ewing E G, Bixby H W, Knacke T W. Recovery system design guide[M]. Washington, D.C.: Department of Defense, Department of the Air Force, Systems Command, Air Force Wright Aeronautical Laboratories, Air Force Flight Dynamics Laboratory, 1978.
4 Knacke T W. Technical-historical development of parachutes and their applications since World War I: AIAA-1986-2423[R]. Reston: AIAA, 1986.
5 COCKERLL D J, The aerodynamics of parachutes: AGARD-AG-295[R]. Paris: AGARD, 1987.
6 DENNIS D R. Recent advances in parachute technology[J]. The Aeronautical Journal198387(869): 333-342.
7 CRUZ J, LINGARD J. Aerodynamic decelerators for planetary exploration: Past, present, and future: AIAA-2006-6792[R]. Reston: AIAA, 2006.
8 王国辉, 牟宇, 张然, 等. 超声速降落伞工程应用的关键技术研究进展[J]. 宇航总体技术2022(2): 1-16.
  WANG G H, MOU Y, ZHANG R, et al. Recent progress in key technology of supersonic parachute application in engineering design[J]. Astronautical System Engineering Technology20226(2) :1-16. (in Chinese).
9 高树义, 戈嗣诚, 梁艳. 火星盘缝带伞跨声速风洞试验研究[J]. 中国空间科学技术201535(4): 69-75.
  GAO S Y, GE S C, LIANG Y. Research on transonic wind tunnel tests of Mars disk-gap-band parachutes[J]. Chinese Space Science and Technology201535(4): 69-75 (in Chinese).
10 徐欣, 贾贺, 陈雅倩, 等. 织物透气性对火星用降落伞气动特性影响机理[J]. 航空学报202243(12), 126289.
  XU X, JIA H, CHEN Y Q, et al. Influence mechanism of fabric permeability of canopy on aerodynamic performance of Mars parachute[J]. Acta aeronauticaet astronautica sinica202243(12): 126289 (in Chinese).
11 荣伟, 陈旭. 火星探测用降落伞研制试验简介[J]. 航天返回与遥感200728(1): 12-17.
  RONG W, CHEN X. Resume of the tests about parachute development for Mars exploration mission?[J]. Spacecraft Recovery & Remote Sensing200728(1): 12-17 (in Chinese).
12 于莹潇, 田佳林. 火星探测器降落伞系统综述[J]. 航天返回与遥感200728(4): 12-16.
  YU Y X, TIAN J L. Mars explorer’s parachute system overview[J]. Spacecraft Recovery & Remote Sensing200728(4): 12-16 (in Chinese).
13 CRUZ J, MINECK R, KELLER D, et al. Wind tunnel testing of various disk-gap-band parachutes: AIAA-2003-2129[R]. Reston: AIAA, 2003.
14 WAY D, DESAI P, ENGELUND W, et al. Design and analysis of the drop test vehicle for the Mars exploration rover parachute structural tests: AIAA-2003-2128[R]. Reston: AIAA, 2003.
15 TAEGER Y, WITKOWSKI A. A summary of dynamic testing of the Mars exploration rover parachute decelerator system: AIAA-2003-2127[R]. Reston; AIAA, 2003.
16 WITKOWSKI A, KANDIS M, ADAMS D S. Mars science laboratory parachute system performance: AIAA-2013- 1277[R]. Reston; AIAA, 2013.
17 FALLON E, FALLON E. System design overview of the Mars Pathfinder parachute decelerator subsystem: AIAA-1997-1511[R]. Reston; AIAA, 1997.
18 MAYNARD J D, Aerodynamics characteristics of parachutes at Mach numbers from 1.6 to 3: NASA TN D-752[R]. Washington, D.C.: NASA, 1961.
19 BRAUN R D, MANNING R M. Mars exploration entry, descent and landing challenges[C]∥2006 IEEE Aerospace Conference. Piscataway: IEEE Press, 2006: 1-18.
20 REYNIER P. Survey of aerodynamics and aerothermodynamics efforts carried out in the frame of Mars exploration projects[J]. Progress in Aerospace Sciences201470: 1-27.
21 REICHENAU D E. Aerodynamic characteristics of disk-gap-band parachutes in the wake of viking entry forebodies at Mach numbers from 0.2 to 2.6:AEDC-TR-72-78[R]. Tennessee: Arnold Engineering Development Center, 1972.
22 POTVIN J, KAVANAUGH J, MCQUILLING M W. A second look at geometric porosity as revealed by computational fluid dynamics (CFD): AIAA-2013-1320[R]. Reston: AIAA, 2013
23 李春鹏, 钱战森, 孙侠生. 远程民机变弯度机翼后缘外形变形矩阵气动设计[J]. 航空学报202344(7): 127335.
  LI C P, QIAN Z S, SUN X S. Trailing edge deformation matrix aerodynamic design for long-range civil aircraft variable camber wing[J]. Acta Aeronauticaet Astronautica Sinica202344(7): 127335 (in Chinese).
24 刘超宇, 屈峰, 孙迪, 等. 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报202344(4): 126664.
  LIU C Y, QU F, SUN D, et al. Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider[J]. Acta Aeronau-Ticaet Astronautica Sinica202344(4): 126664 (in Chinese).
25 李润泽, 张宇飞, 陈海昕. 超临界机翼多目标气动优化设计的策略与方法[J]. 航空学报202041(5): 623409.
  LI R Z, ZHANG Y F, CHEN H X. Strategies and methods for multi-objective aerodynamic optimization design for supercritical wings[J]. Acta Aeronautica et Astronautica Sinica202041(5): 623409 (in Chinese).
26 李权, 郭兆电, 雷武涛, 等. 基于工程环境的气动多目标优化设计平台研究[J]. 航空学报201637(1): 255-268.
  LI Q, GUO Z D, LEI W T, et al. Engineering environment-based multi-objective optimization platform for aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica201637(1): 255-268 (in Chinese).
27 SENGUPTA A, STELTZNER A, WITKOWSKI A, et al. An overview of the Mars science laboratory parachute decelerator system[C]∥2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-8.
28 XUE X P, KOYAMA H, NAKAMURA Y. Numerical simulation of supersonic aerodynamic interaction of a parachute system[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan201311: 33-42.
29 SHEN G H, XIA Y Q, SUN H R. A 6DOF mathematical model of parachute in Mars EDL[J]. Advances in Space Research201555(7): 1823-1831.
30 徐丽, 张开军. 基于HLLC Riemann求解器和重叠网格的三维可压缩粘性流场的计算[J]. 应用力学学报201532(6): 1025-1030.
  XU L, ZHANG K J. Calculation of three-dimensional compressible viscous flow field based on HLLC Riemann solver and overlapping grid[J]. Chinese Journal of Applied Mechanics201532(6): 1025-1030 (in Chinese).
31 JIANG L L, JIA H, XU X, et al. Numerical study on aerodynamic performance of Mars parachute models with geometric porosities[J]. Space: Science and Technology20222022: 9851982.
32 JIANG L L, JIA H, XU X, et al. Effect of different geometric porosities on aerodynamic characteristics of supersonic parachutes[J]. Space: Science & Technology20233: 0062.
33 BARNHARDT M, DRAYNA T, NOMPELIS I, et al. Detached eddy simulations of the MSL parachute at supersonic conditions: AIAA-2007-2529?[R]. Reston: AIAA, 2007.
34 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报201637(11): 3197-3225.
  HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica201637(11): 3197-3225 (in Chinese).
35 MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics200042(1): 55-61.
36 张德虎, 高正红, 李焦赞, 等. 基于双层代理模型的无人机气动隐身综合设计[J]. 空气动力学学报201331(3): 394-400.
  ZHANG D H, GAO Z H, LI J Z, et al. Aerodynamic and stealth synthesis design optimization of UAV based on double-stage metamodel[J]. Acta Aerodynamica Sinica201331(3): 394-400 (in Chinese).
37 SIMPSON T W, POPLINSKI J D, KOCH P N, et al. Metamodels for Computer-based Engineering Design: survey and recommendations[J]. Engineering with Computers200117(2): 129-150.
38 VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks199910(5): 988-999.
39 韩欣珉, 徐浩军, 尚柏林. 基于支持向量机的轰炸机敏感性权衡优化[J]. 系统工程与电子技术201941(11): 2488-2495.
  HAN X M, XU H J, SHANG B L. Tradeoff optimization of bomber susceptibility based on support vector machines[J]. Systems Engineering and Electronics201941(11): 2488-2495 (in Chinese).
40 DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ?[J]. IEEE Transactions on Evolutionary Computation20026(2): 182-197.
Outlines

/