ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Three-port rectifier for pulse load frequency sudden drop control strategy
Received date: 2024-03-20
Revised date: 2024-04-23
Accepted date: 2024-06-25
Online published: 2024-07-01
Supported by
National Natural Science Foundation of China(51977107);Aeronautical Science Foundation of China(2020HKZ0001)
The three-port pulse power decoupling rectifier effectively eliminates the adverse impact of pulse power loads such as airborne radar on the power supply system by utilizing the control concept of power decoupling. The traditional voltage outer loop proportional integral control adopted is difficult to achieve the optimal dynamic control effects when the pulse frequency changes. To address the voltage fluctuation problem caused by power reverse transmission during sudden drop of pulse frequency, a Capacitive Energy Balance Control (CEBC) algorithm based on power redistribution is proposed from the perspective of power transmission of three-port rectifiers. The differences between sudden drops and sudden increases in pulse load frequency are pointed out. Unlike sudden frequency increases, it is necessary to reduce the output power of the AC source during sudden drops of frequency. Excessively low power not only affects the dynamic control effect, but also causes fluctuations of steady-state port voltage. Therefore, from the perspective of dynamic process power transmission, the specific implementation of CEBC is theoretically analyzed, and the voltage control effects of different power allocation results are compared through simulation. It is determined that the two-stage structure has the best dynamic control effect. Finally, the feasibility of the proposed solution is verified through experiments. Experimental results show that the CEBC method using two-stage power transmission can effectively reduce the system response time and improve the dynamic response capability.
Xinyu LUAN , Yu WANG , Zhangwu WU . Three-port rectifier for pulse load frequency sudden drop control strategy[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(24) : 330424 -330424 . DOI: 10.7527/S1000-6893.2024.30424
1 | 严仰光, 秦海鸿, 龚春英, 等. 多电飞机与电力电子[J]. 南京航空航天大学学报, 2014, 46(1): 11-18. |
YAN Y G, QIN H H, GONG C Y, et al. More electric aircraft and power electronics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(1): 11-18 (in Chinese). | |
2 | HUANG X Z, RUAN X B, DU F J, et al. A pulsed power supply adopting active capacitor converter for low-voltage and low-frequency pulsed loads[J]. IEEE Transactions on Power Electronics, 2018, 33(11): 9219-9230. |
3 | FARHADI M, MOHAMMED O. Energy storage technologies for high-power applications[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 1953-1961. |
4 | 李锴, 李建科, 季少卫, 等. 一种现代雷达非线性脉冲特性的模拟装置[J]. 现代雷达, 2016, 38(3): 91-94. |
LI K, LI J K, JI S W, et al. A simulation device based on modern radar with continuous pulse characteristic[J]. Modern Radar, 2016, 38(3): 91-94 (in Chinese). | |
5 | 范原. 脉冲负载直流变换器输出动态响应的研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
FAN Y. Study on output dynamic response of pulse-loaded DC converter?[D]. Harbin: Harbin Institute of Technology, 2015 (in Chinese). | |
6 | 孙勇, 林松, 卢胜利, 等. 长脉宽模式下雷达供电系统功率波动机理研究[J]. 电源学报, 2021, 19(03): 134-141. |
SUN Y, LIN S, LU S L, et al. Study on power fluctuation mechanism of radar power system in long pulse width mode[J]. Journal of Power Supply, 2021, 19(3): 134-141 (in Chinese). | |
7 | 王勇, 刘正春, 刘金宁, 等. 带脉冲负载电池储能系统的源载耦合建模[J]. 陆军工程大学学报, 2023, 2(02): 23-30. |
WANG Y, LIU Z C, LIU J N, et al. Source-load coupled modeling of battery energy storage system with pulse load[J]. Journal of Army Engineering University of PLA, 2023, 2(2): 23-30 (in Chinese). | |
8 | 朱泽宇, 杨平, 曹琎, 等. 具有快速动态响应的大功率脉冲负载电源设计与实现[J]. 电工电能新技术, 2019, 38(5): 13-20. |
ZHU Z Y, YANG P, CAO J, et al. Design and implementation of pulsed load power supply with fast dynamic response[J]. Advanced Technology of Electrical Engineering and Energy, 2019, 38(5): 13-20 (in Chinese). | |
9 | 朱建鑫. 三相交直流供电系统低频脉冲功率抑制关键技术研究[D]. 南京: 南京航空航天大学, 2020. |
ZHU J X. Research on key technologies of low frequency pulse power suppression in three-phase DC power supply system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
10 | 吴红飞, 朱建鑫, 陈君雨, 等. 面向高峰均功率比低频脉冲负载三相交流供电系统的电能综合补偿器[J]. 中国电机工程学报, 2020, 40(13): 4310-4319. |
WU H F, ZHU J X, CHEN J Y, et al. A comprehensive compensator for three-phase AC power system with high peak-to-average ratio low frequency pulsed load[J]. Proceedings of the CSEE, 2020, 40(13): 4310-4319 (in Chinese). | |
11 | FENG G, MEYER E, LIU Y F. A new digital control algorithm to achieve optimal dynamic performance in DC-to-DC converters[J]. IEEE Transactions on Power Electronics, 2007, 22(4): 1489-1498. |
12 | 刘晓东, 蒋昌虎, 邱亚杰, 等. Buck变换器动态过程电容充放电平衡控制策略[J]. 电机与控制学报, 2010, 14(6): 77-82. |
LIU X D, JIANG C H, QIU Y J, et al. A control algorithm based on capacitor charge balance during transient for Buck converter[J]. Electric Machines and Control, 2010, 14(6): 77-82 (in Chinese). | |
13 | 刘晓东, 邱亚杰, 方炜, 等. Boost变换器电容电荷平衡动态最优控制[J]. 电力自动化设备, 2011, 31(5): 63-67. |
LIU X D, QIU Y J, FANG W, et al. Optimal dynamic control based on capacitor charge balance for Boost converter[J]. Electric Power Automation Equipment, 2011, 31(5): 63-67 (in Chinese). | |
14 | 邱楹, 陈希有, 仲崇权, 等. 全负载DC-DC变换器电荷平衡数字控制[J]. 中国电机工程学报, 2013, 33(18): 40-47, 5. |
QIU Y, CHEN X Y, ZHONG C Q, et al. Charge balance digital control for DC-DC converters with full load range[J]. Proceedings of the CSEE, 2013, 33(18): 40-47, 5 (in Chinese). | |
15 | 王宇, 肖文妍, 郝雯娟, 等. 永磁磁通切换电机的转矩冲量平衡控制技术[J]. 中国电机工程学报, 2017, 37(22): 6577-6584. |
WANG Y, XIAO W Y, HAO W J, et al. Research on torque impulse balance control strategy of flux-switching permanent magnet machine[J]. Proceedings of the CSEE, 2017, 37(22): 6577-6584 (in Chinese). | |
16 | 顾惠, 王宇, 肖文妍, 等. 容错型永磁磁通切换电机单相及多相短路情况下转矩冲量平衡控制策略[J]. 中国电机工程学报, 2019, 39(19): 5843-5856. |
GU H, WANG Y, XIAO W Y, et al. Torque impulse balance control strategy for fault tolerant flux switching permanent magnet motor under single-phase and multi-phase short circuit conditions?[J]. Proceedings of the CSEE, 2019, 39(19): 5843-5856 (in Chinese). | |
17 | WANG Y, ZHANG C G, HAO W J. Improved vector control method based on torque current integral balance for flux-switching permanent magnet machines[J]. IEEE Transactions on Power Electronics, 2022, 37(2): 2072-2088. |
18 | 付宏伟, 王宇. 三端口变换器的电容电荷平衡控制技术研究[J]. 中国电机工程学报, 2020, 40(15): 4988-4999. |
FU H W, WANG Y. Research of control strategy based on capacitor charge balance for the three-port converter[J]. Proceedings of the CSEE, 2020, 40(15): 4988-4999 (in Chinese). | |
19 | 钟炎平, 沈颂华. PWM整流器的一种快速电流控制方法[J]. 中国电机工程学报, 2005, 25(12): 52-56. |
ZHONG Y P, SHEN S H. A fast current control scheme for PWM rectifier[J]. Proceedings of the CSEE, 2005, 25(12): 52-56 (in Chinese). | |
20 | 李林, 吴红飞, 朱建鑫, 等. 集成低频脉冲功率解耦端口的机载电源系统[J]. 航空学报, 2021, 42(6): 624584. |
LI L, WU H F, ZHU J X, et al. Airborne power supply system integrating low-frequency pulse power decoupling port[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 624584 (in Chinese). | |
21 | 赵朝阳. 连续负载瞬态DC-DC变换器的电容可靠性优化与最优瞬态轨迹控制研究[D]. 重庆: 重庆大学, 2020. |
ZHAO C Y. Research on capacitance reliability optimization and optimal transient trajectory control of continuous load transient DC-DC converter[D]. Chongqing: Chongqing University, 2020 (in Chinese). |
/
〈 |
|
〉 |