ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Calculation method for heat flow at stagnation point of spherical head based on boundary layer theory
Received date: 2024-03-26
Revised date: 2024-06-04
Accepted date: 2024-06-21
Online published: 2024-06-25
In aircraft thermal protection design, it is very important to accurately know the heat flux at the stagnation point of spherical head. Based on the assumption of self-similar boundary layer at the stagnation point of equilibrium air, the boundary layer equations are derived. The fourth-order Runge-Kutta method is used to numerically solve the ordinary differential boundary layer equations after coordinate transformation, and the forward approximation shooting method is established to find the optimal solution for the equations. Thus, by solving the boundary layer equations, a method for obtaining the heat flux at the stagnation point of the spherical head is established, which is referred to as Boundary Layer Equations Stagnation (abbreviated as BLES) heat flux in this paper. The results obtained are consistent with the experimental values. Using this method, the calculation deviation of heat flux formula of spherical stagnation point under Fay-Riddell equilibrium flow condition at 182 working conditions of 10–60 km height and different velocity and wall temperature is analyzed. It is found that in most working conditions, the calculation deviation of heat flux increases obviously when the wall temperature approaches the outer edge temperature of boundary layer. New heat flux formulas for spherical stagnation point are obtained by fitting the dimensionless parameters into a combination of several dimensionless parameters. The heat flux calculation results under several working conditions are compared, obtaining better results than those of the spherical stagnation point heat flux formula under the Fay-Riddell equilibrium flow condition.
Runyu TIAN , Hongming GONG , Yu CHANG , Xiaoping KONG . Calculation method for heat flow at stagnation point of spherical head based on boundary layer theory[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(2) : 130448 -130448 . DOI: 10.7527/S1000-6893.2024.30448
1 | FAY J A, RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aerospace Sciences, 1958, 25(2): 73-85. |
2 | 万云博, 马戎, 王年华, 等. 基于混合网格多维梯度重构的热流预测方法研究[J]. 力学学报, 2018, 50(5): 1003-1012. |
WAN Y B, MA R, WANG N H, et al. Accurate aero-heating predictions based on mul-ti-dimensional gradient reconstruction on hybrid unstructured grids[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1003-1012 (in Chinese). | |
3 | 胡守超, 庄宇, 李贤, 等. 高超声速气动热标模 HyHERM-I试验[J]. 航空学报, 2022, 43(S2): 727804. |
HU S C, ZHUANG Y, LI X, et al. Hypersonic aero-heating environment research model HyHERM-I: Experiment[J]. Acta Aeronautica et Astronautica Sinica,2022, 43(S2): 727804 (in Chinese). | |
4 | PRANDTL L. Applications of modern hydrodynamics to aeronautics: Report No.116[R]. Washington, D.C.: NACA, 1923. |
5 | 孔祥志, 韩宇峰. 高超声速平板边界层中波纹粗糙壁峰值热流的变化规律及预测[J]. 航空学报, 2023, 44(12): 127769. |
KONG X Z, HAN Y F. Patterns and prediction of surface peak heat flux in hypersonic flat plate boundarylayer over wave wall[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 127769 (in Chinese). | |
6 | RESHOTKO E, COHEN C B.Similar solutions for the compressible laminar boundary layer with heat transfer and pressure gradient[J].Technical Report Archive & Image Library, 1954, 22(3325). |
7 | LEES L. Laminar heat transfer over blunt-nosed bodies at hypersonic flight speeds[J]. Journal of Jet Propulsion, 1956, 26(4): 259-269. |
8 | TAUBER M E. A review of high-speed, convective, heat-transfer computation methods[J]. NASA STI/Recon Technical Report A, 1989, 90: 8_1-8_63. |
9 | DORODNITSYN A A. Laminar boundary layer in compressible fluid[J]. Doklady Akademii Nauk, 1942, 34: 213-219. |
10 | PARK S H, NEEB D, PLYUSHCHEV G, et al. A study on heat flux predictions for re-entry flight analysis[J]. Acta Astronautica, 2021, 187: 271-280. |
11 | 田润雨, 龚红明, 常雨, 等. 高焓流场球头外形气动热试验研究[J]. 空气动力学学报, 2024, 42(1): 1-12. |
TIAN R Y, GONG H M, CHANG Y, et al. Experimental study on aerodynamic heat of sphere heads in high enthalpy flow[J]. Acta Aerodynamica Sinica, 2024, 42(1): 1-12 (in Chinese). | |
12 | DE FILIPPIS F, SERPICO M. Air high-enthalpy stagnation point heat flux calculation[J]. Journal of Thermophysics and Heat Transfer, 1998, 12(4): 608-610. |
13 | ZUPPARDI G, VERDE G. Improved fay-riddell procedure to compute the stagnation point heat flux[J]. Journal of Spacecraft and Rockets, 1998, 35(3): 403-405. |
14 | LEE S, YANG Y, KIM J G. Evaluation of Fay and Riddell formula under hypersonic flight conditions[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2023, 33(1): 14-41. |
15 | OLIVIER H. An improved method to determine free stream conditions in hypersonic facilities[J]. Shock Waves, 1993, 3(2): 129-139. |
16 | 曲齐齐. 高超声速钝头体表面热流数值模拟研究[D]. 天津: 天津大学, 2017: 24-31. |
QU Q Q. Numerical simulation of surface heat flux of hypersonic blunt body[D].Tianjin: Tianjin University, 2017: 24-31 (in Chinese). | |
17 | GUPTA R N, LEE K P, THOMPSON R A, et al. Calculations and curve fits of thermodynamic and transport properties for equilibrium air to 30000 K: NASA Reference Publication 1260[R]. Washington, D.C.: NASA, 1991. |
18 | ANDERSON J D Jr. Hypersonic and high-temperature gas dynamics[M]. 2nd ed. Reston: AIAA, 2006. |
19 | SRINIVASAN S, TANNEHILL J C, WEILMUENSTER K J. Simplified curve fits for the thermodynamic properties of equilibrium air: NASA Reference Publication 1181[R]. Washington, D.C.: NASA, 1987. |
20 | 柳军. 热化学非平衡流及其辐射现象的实验和数值计算研究[D]. 长沙: 国防科学技术大学, 2004: 53-101. |
LIU J. Experimental and numerical study on thermochemical non-equilibrium flow and its radiation phenomenon[D].Changsha: National University of Defense Technology, 2004: 53-101 (in Chinese). | |
21 | 李海燕. 高超声速高温气体流场的数值模拟[D]. 绵阳: 中国空气动力研究与发展中心, 2007: 38-90. |
LI H Y. Numerical simulation of hypersonic high temperature gas flow field[D]. Mianyang: China Aerodynamics Research and Develop-ment Center, 2007: 38-90 (in Chinese). | |
22 | 刘国庆. 应用数值分析[M]. 北京: 化学工业出版社, 2020: 201-220. |
LIU G Q. Applied numerical analysis[M]. Beijing: Chemical Industry Press, 2020: 201-220 (in Chinese). | |
23 | GUPTA R N, YOS J M, THOMPSON R A, et al. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K: NASA Reference Publication 1232[R]. Washington, D. C.: NASA, 1990. |
24 | CHASE M W Jr, CURNUTT J L, DOWNEY J R Jr, et al. JANAF thermochemical tables, 1982 supplement[J]. Journal of Physical and Chemical Reference Data, 1982, 11(3): 695-940. |
25 | MCBRIDE B J, ZEHE M J, GORDON S. NASA glenn coefficients for calculating thermodynamic properties of individual species: NASA/TP-2002-211556[R]. Washington, D. C.: NASA, 2002. |
26 | IRIMPAN K J, MENEZES V. Stagnation heat flux estimation in spherically blunt axisymmetric hypersonic models[J]. Journal of Aerospace Engineering, 2023, 237(6):1369-1375. |
27 | CHADWICK K, CHADWICK K. Stagnation heat transfer measurement techniques in hypersonic shock tunnel flows over spherical segments: AIAA-1997-2493[R]. Reston: AIAA, 1997. |
28 | MACLEAN M, MARINEAU E, PARKER R, et al. Effect of surface catalysis on measured heat transfer in an expansion tunnel facility: AIAA-2012-0651[R]. Reston: AIAA, 2012. |
/
〈 |
|
〉 |