Electronics and Electrical Engineering and Control

Stationkeeping strategies for close formation flight on distant retrograde orbits

  • Haiyue AO ,
  • Chihang YANG ,
  • Yu SHI ,
  • Hao ZHANG
Expand
  • 1.Technology and Engineering Center for Space Utilization,Chinese Academy of Sciences,Beijing 100094,China
    2.School of Aerospace Engineering,University of Chinese Academy of Sciences,Beijing 100049,China
    3.Beijing Institute of Control Engineering,Beijing 100094,China

Received date: 2024-02-22

  Revised date: 2024-04-25

  Accepted date: 2024-06-13

  Online published: 2024-06-25

Supported by

Strategic Priority Research Program of the Chinese Academy of Sciences(XDA30010200)

Abstract

Distant Retrograde Orbit (DRO) is a family of large-scale, lunar-retrograde periodic orbits in the cislunar space. Due to its advantages of long-term stability and low-energy transfer, DRO has become a potential orbit for many cislunar space missions. Investigating close formation techniques on DRO is of great significance for cislunar on-orbit servicing. Considering navigation and execution errors, it is essential to study the uncertainty propagation of close relative motion on DRO and design stationkeeping strategies. The fundamental solution set of linearized relative motion on DRO obtained through the Floquet theory is introduced. Based on periodic solutions, analyses of sensitivity and safety uncertainty propagation of DRO formation flight are conducted using the Cauchy-Green tensor and unscented transformation, respectively. Based on these analyses and considering engineering constraints, it is found that keeping the maneuver frequency of 2 times per cycle and the maneuver locations at two perilunes is the near-optimal stationkeeping scheme. Following this, two stationkeeping algorithms are proposed based on the concepts of relative trajectory following and absolute phase bias. The simulation results show that both stationkeeping algorithms can ensure long-term safety and reasonable configuration of DRO close formation flight.

Cite this article

Haiyue AO , Chihang YANG , Yu SHI , Hao ZHANG . Stationkeeping strategies for close formation flight on distant retrograde orbits[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(22) : 330306 -330306 . DOI: 10.7527/S1000-6893.2024.30306

References

1 彭超, 温昶煊, 高扬. 地月空间DRO与HEO(3∶1/2∶1)共振轨道延拓求解及其稳定性分析[J]. 载人航天201824(6): 703-718.
  PENG C, WEN C X, GAO Y. DRO and HEO(3∶1/2∶1) resonant orbits in cislunar space calculated by continuation and their stability analysis [J]. Manned Spaceflight201824(6): 703-718 (in Chinese).
2 PEROZZI E, CECCARONI M, VALSECCHI G B, et al. Distant retrograde orbits and the asteroid hazard[J]. The European Physical Journal Plus2017132(8): 367.
3 张晨, 张皓. 基于月球借力的低能DRO入轨策略[J]. 航空学报202344(2): 326507.
  ZHANG C, ZHANG H. Lunar-gravity-assisted low-energy transfer from Earth into Distant Retrograde Orbit (DRO)[J]. Acta Aeronautica et Astronautica Sinica202344(2): 326507 (in Chinese).
4 ZHANG Y Y, ZHANG W. Deep space exploration strategy based on distant retrograde orbits space station[J]. Journal of Physics: Conference Series20212006(1): 012061.
5 BEZROUK C, PARKER J S. Long term evolution of distant retrograde orbits in the Earth-Moon system[J]. Astrophysics and Space Science2017362(9): 176.
6 孟占峰, 高珊, 盛瑞卿. 嫦娥五号月球轨道交会导引策略设计[J]. 航空学报202344(5): 326584.
  MENG Z F, GAO S, SHENG R Q. Lunar orbit rendezvous phasing design for Chang’e-5 Mission[J]. Acta Aeronautica et Astronautica Sinica202344(5): 326584 (in Chinese).
7 LI W J, CHENG D Y, LIU X G, et al. On-orbit service (OOS) of spacecraft: A review of engineering developments[J]. Progress in Aerospace Sciences2019108: 32-120.
8 COCKELL C S, HERBST T, LéGER A, et al. Darwin—an experimental astronomy mission to search for extrasolar planets[J]. Experimental Astronomy200923(1): 435-461.
9 刘培栋, 焦博涵, 党朝辉. 面向空间引力波探测的多边形编队设计方法[J]. 航空学报202243(S1): 726907.
  LIU P D, JIAO B H, DANG Z H. Design method of polygon formation for space-based gravitational-wave detection[J]. Acta Aeronautica et Astronautica Sinica202243(S1): 726907 (in Chinese).
10 YANG C H, ZHANG H. Formation flight design for a LISA-like gravitational wave observatory via Cascade optimization[J]. Astrodynamics20193(2): 155-171.
11 李霜琳, 蒲京辉, 郭鹏斌 等. DRO卫星编队同波束差分相对导航[J]. 深空探测学报(中英文)202310(2): 211-219.
  LI S L, PU J H, GUO P B, et al. Single-beam differential relative navigation of DRO satellite formation[J]. Journal of Deep Space Exploration202310(2): 211-219 (in Chinese).
12 蒲京辉, 李霜琳, 刘江凯 等. 3种典型地月轨道的天基定轨与时间同步[J]. 深空探测学报(中英文)10(6): 1-11.
  PU J H, LI S L, LIU J K, al er. Space-based orbit determination and time synchronization method for three typical cislunar orbits[J]. Journal of Deep Space Exploration202310(6): 1-11 (in Chinese).
13 CLOHESSY W H, WILTSHIRE R S. Terminal guidance system for satellite rendezvous [J]. Journal of the Aerospace Sciences196027(9): 653-658.
14 TSCHAUNER J, HEMPEL P. Optimale beschleunigungsprogramme fur das rendezvous-manover[J]. Astronautica Acta196410(5-6): 296.
15 GIM D W, ALFRIEND K T. State transition matrix of relative motion for the perturbed noncircular reference orbit[J]. Journal of Guidance Control Dynamics200326(6): 956-971.
16 DANG Z H, ZHANG H. Linearized relative motion equations through orbital element differences for general Keplerian orbits[J]. Astrodynamics20182(3): 201-215.
17 HOWELL K C, MILLARD L D. Control of satellite imaging formations in multi-body regimes[J]. Acta Astronautica200964(5-6): 554-570.
18 PENG H J, LI C. Bound evaluation for spacecraft swarm on libration orbits with an uncertain boundary[J]. Journal of Guidance, Control, and Dynamics201740(10): 2690-2698.
19 PERNICKA H J, CARLSON B A, BALAKRISHNAN S N. Spacecraft formation flight about libration points using impulsive maneuvering[J]. Journal of Guidance, Control, and Dynamics200629(5): 1122-1130.
20 QI R, XU S J, XU M. Impulsive control for formation flight about libration points[J]. Journal of Guidance, Control, and Dynamics201235(2): 484-496.
21 HOWELL K C, MARCHAND B G. Natural and non-natural spacecraft formations near the L1 and L2libration points in the Sun-Earth/Moon ephemeris system[J]. Dynamical Systems200520(1): 149-173.
22 MENG Y H, ZHANG Y D, DAI J H. Floquet-based design and control approach to spacecraft formation flying in libration point orbits[J]. Science China Technological Sciences201154(3): 758-766.
23 SIMANJUNTAK T, NAKAMIYA M, KAWAKATSU Y. Design of natural loose formation flying around halo orbits[J]. Transactions of the Japan Society for Aeronautical and Space Sciences201255(4): 254-262.
24 FRANZINI G, INNOCENTI M. Relative motion dynamics in the restricted three-body problem[J]. Journal of Spacecraft and Rockets201956(5): 1322-1337.
25 YANG C H, WANG M, ZHANG H. Close relative motion on distant retrograde orbits[J]. Chinese Journal of Aeronautics202336(3): 335-356.
26 杨驰航, 符弘岚, 张皓. 远距离逆行轨道上的近距离自然及受控编队[J]. 航空学报202344(5): 326563.
  YANG C H, FU H L, ZHANG H. Natural and non-natural close formation flight on distant retrograde orbits[J]. Acta Aeronautica et Astronautica Sinica202344(5): 326563 (in Chinese).
27 WIESEL W, SHELTON W. Modal control of an unstable periodic orbit[J]. Journal of the Astronautical Sciences198331: 63-76.
28 HOWELL K C, PERNICKA H J. Station-keeping method for libration point trajectories[J]. Journal of Guidance, Control, and Dynamics199316(1): 151-159.
29 DUNHAM D W, ROBERTS C E. Stationkeeping techniques for libration-point satellites[J]. The Journal of the Astronautical Sciences200149(1): 127-144.
30 LIAN Y J, GóMEZ G, MASDEMONT J J, et al. Station-keeping of real Earth-Moon libration point orbits using discrete-time sliding mode control[J]. Communications in Nonlinear Science and Numerical Simulation201419(10): 3792-3807.
31 GUZZETTI D, ZIMOVAN E M, HOWELL K C, et al. Stationkeeping analysis for spacecraft in lunar near rectilinear halo orbits [C]∥ 27th AAS/AIAA Space Flight Mechanics Meeting. San Antonio: American Astronautical Society, 2017: 3199-3218.
32 ZHANG R K, WANG Y, SHI Y, et al. Performance analysis of impulsive station-keeping strategies for cis-lunar orbits with the ephemeris model[J]. Acta Astronautica2022198: 152-160.
33 赵育善, 师鹏, 张晨. 深空飞行动力学[M]. 北京: 中国宇航出版社, 2016: 131-134.
  ZHAO Y S, SHI P, ZHANG C. Deep space flight dynamics[M]. Beijing: Chinese Astronautic Publishing House, 2016: 131-134 (in Chinese).
34 陈冠华, 杨驰航, 张晨, 等. 地月空间的远距离逆行轨道族及其分岔研究[J]. 北京航空航天大学学报202248(12): 2576-2588.
  CHEN G H, YANG C H, ZHANG C, et al. Distant retrograde orbits and its bifurcations in Earth-Moon system[J]. Journal of Beijing University of Aeronautics and Astronautics202248(12): 2576-2588 (in Chinese).
35 MURALIDHARAN V, HOWELL K C. Stretching directions in cislunar space: applications for departures and transfer design[J]. Astrodynamics20237(2): 153-178.
36 QIN S H, HUANG Y, LI P J, et al. Orbit and tracking data evaluation of Chang’E-4 relay satellite[J]. Advances in Space Research201964(4): 836-846.
37 PARRISH N L, BOLLIGER M J, KAYSER E, et al. Near rectilinear halo orbit determination with simulated DSN observations: AIAA-2020-1700[R]. Reston: AIAA, 2020.
38 段建锋, 张宇, 孔静, 等. 嫦娥五号定轨定位策略设计与精度评估[J]. 中国科学:物理学 力学 天文学202151(11):57-65.
  DUAN J F, ZHANG Y, KONG J, et al. Orbit determination, positioning strategy design, and accuracy evaluation of Chang’e-5[J]. Scientia Sinica Physica, Mechanica & Astronomica, 202151(11): 57-65 (in-Chinese).
Outlines

/