Articles

Non-cooperative radiant positioning of UAV via EM interferometer array

  • Shun YANG ,
  • Fan ZHANG ,
  • Wei ZHANG ,
  • Jun SHI ,
  • Xiaoling ZHANG
Expand
  • 1.School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China
    2.Chengdu Aircraft Design & Research Institute China,Chengdu 610041,China
E-mail: chengdu611@126.com

Received date: 2024-01-19

  Revised date: 2024-03-22

  Accepted date: 2024-06-11

  Online published: 2024-06-25

Supported by

National Natural Science Foundation of China(62371104)

Abstract

Non-cooperative radiant positioning is a difficult and crucial issue in electromagnetic compatibility measurement, which is aimed to find the abnormal radiants on Unmanned Aerial Vehicles (UAVs). This paper employs interferometer array technology to achieve high-accuracy positioning of broadband random non-cooperative radiants. The proposed method enhances the system’s ability to detect weak signals through time-domain energy accumulation. By utilizing array signal angle estimation technology and optimizing the design of a Minimum Redundant Antenna Array (MRAA), non-cooperative radiant positioning is realized. Finally, the angular resolution of the interferometer is enhanced through sparse reconstruction algorithm to improve the high-accuracy positioning of multiple non-cooperative radiants. Simulation experiments show that the interferometer array can spatially separate and position multiple broadband random non-cooperative radiants. Through the optimization of the MRAA design combined with sparse reconstruction algorithm, the positioning accuracy for multiple radiants in the Ultra-High Frequency (UHF) band is better than 1 meter, meeting the accuracy requirement for radiant positioning in electromagnetic compatibility diagnosis. Further analysis reveals that the performance of the interferometer array is influenced by the number of external radiants. Generally, the fewer the radiants, the higher the algorithm’s stability. For an 8-channel MRAA, the number of external radiants should be kept below seven to reduce issues of missed detection or false alarms.

Cite this article

Shun YANG , Fan ZHANG , Wei ZHANG , Jun SHI , Xiaoling ZHANG . Non-cooperative radiant positioning of UAV via EM interferometer array[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(17) : 530192 -530192 . DOI: 10.7527/S1000-6893.2024.30192

References

1 谢瑞云, 毛得明, 向敏. 无人机电气系统与机载通信设备电磁兼容问题研究[J]. 通信技术201447(10): 1211-1215.
  XIE R Y, MAO D M, XIANG M. EMC between UAV electrical system and airborne communication device[J]. Communications Technology201447(10): 1211-1215 (in Chinese).
2 徐宏伟, 张勇. 舰载机机舰电磁兼容性适配技术研究[J]. 飞机设计202343(3): 59-65.
  XU H W, ZHANG Y. Research on electromagnetic compatibility adaptation technology of carrier-based aircraft and carrier[J]. Aircraft Design202343(3): 59-65 (in Chinese).
3 柳锐锋, 张广军, 梁婷. 某型无人机系统级电磁兼容试验方法研究[J]. 舰船电子工程201535(9): 165-167, 175.
  LIU R F, ZHANG G J, LIANG T. Study of unmanned aircraft system-level EMC test approach[J]. Ship Electronic Engineering201535(9): 165-167, 175 (in Chinese).
4 李勃, 黄大庆. 一种新的无人机系统级电磁兼容测试法[J]. 中山大学学报(自然科学版)200948(2): 31-35.
  LI B, HUANG D Q. An innovative EMC test method at the system level of UAV[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni200948(2): 31-35 (in Chinese).
5 黄大庆, 李勃. 新型系统级无人机电磁兼容测试法[J]. 华中科技大学学报(自然科学版)200937(3): 66-68.
  HUANG D Q, LI B. Novel system-level EMC test method for UAV[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition)200937(3): 66-68 (in Chinese).
6 洪凯. 阵元失效对干涉仪测向算法影响的研究[D]. 西安: 西安电子科技大学, 2021.
  HONG K. Research on influence of array failure on interferometer direction finding algorithm[D]. Xi’an: Xidian University, 2021 (in Chinese).
7 黎伟. 椭圆阵干涉仪测向技术研究[D]. 西安: 西安电子科技大学, 2021.
  LI W. Research on direction finding technology of elliptical array interferometer[D]. Xi’an: Xidian University, 2021 (in Chinese).
8 陈佳文. 基于多基线干涉仪测向算法的研究及实现[D]. 成都: 电子科技大学, 2022.
  CHEN J W. Research and implementation of direction finding algorithm based on multi-baseline interferometer[D].Chengdu: University of Electronic Science and Technology of China, 2022 (in Chinese).
9 姜志成. 干涉仪阵列测向误差分析及校准方法研究[J]. 电子世界2021(20): 104-106.
  JIANG Z C. Analysis of direction finding error of interferometer array and research on calibration method[J]. Electronics World2021(20): 104-106 (in Chinese).
10 李浩, 卢海梁, 余锐, 等. 一种L波段相控阵微波辐射计射频干扰检测算法[J]. 电子与信息学报201941(1): 172-179.
  LI H, LU H L, YU R, et al. Radio-frequency interference detection algorithm for L-band phased array microwave radiometer[J]. Journal of Electronics & Information Technology201941(1): 172-179 (in Chinese).
11 张天旗, 黄海玲, 张荣智, 等. MWP967KV型微波辐射计晴阴天气分析[J]. 民航学报20193(3): 82-87.
  ZHANG T Q, HUANG H L, ZHANG R Z, et al. The analysis of MWP967KV microwave radiometer during sunny and cloudy weather[J]. Journal of Civil Aviation20193(3): 82-87 (in Chinese).
12 陈海建, 丁孝永, 王锐. 一种综合孔径微波辐射计成像处理算法[J]. 宇航计测技术201939(3): 79-84.
  CHEN H J, DING X Y, WANG R. An image processing algorithm about aperture synthesis microwave radiometer[J]. Journal of Astronautic Metrology and Measurement201939(3): 79-84 (in Chinese).
13 许皓文, 陆浩, 王振占. 高光谱微波辐射计系统中2GHz带宽数字谱仪设计[J]. 电子学报202250(6): 1472-1479.
  XU H W, LU H, WANG Z Z. Design of 2 GHz bandwidth digital spectrometer in hyperspectral microwave radiometer system[J]. Acta Electronica Sinica202250(6): 1472-1479 (in Chinese).
14 何伟杰. 基于无人机平台的无线电测向技术研究[D]. 兰州: 兰州交通大学, 2020.
  HE W J. Research on radio direction finding technology based on unmanned aerial vehicle platform[D].Lanzhou: Lanzhou Jiatong University, 2020 (in Chinese).
15 关博. 基于稀疏重构及动态性分析的宽带压缩频谱感知算法研究[D]. 长春: 吉林大学, 2022.
  GUAN B. Research on wideband compressive spectrum sensing algorithm based on sparse reconstruction and dynamic analysis[D].Changchun: Jilin University, 2022 (in Chinese).
16 邓玉成, 王峰. 基于稀疏重构的角度-速度联合目标参数估计方法[J]. 中国电子科学研究院学报202318(8): 681-689.
  DENG Y C, WANG F. Angle velocity joint target parameter estimation method based on sparse reconstruction[J]. Journal of China Academy of Electronics and Information Technology202318(8): 681-689 (in Chinese).
17 曾琴. 多任务稀疏重构方法研究[D]. 成都: 电子科技大学, 2023.
  ZENG Q. Research on multi-task sparse reconstruction methods[D].Chengdu: University of Electronic Science and Technology of China, 2023 (in Chinese).
18 宋志伟. EMC测试中的谐波识别与提取技术研究[D]. 西安: 西安电子科技大学, 2018.
  SONG Z W. Research on harmonic recognition and extraction based on EMC test[D].Xi’an: Xidian University, 2018 (in Chinese).
19 田鹏, 吴一丁, 许玉昆. 谐波干扰分析与抑制技术[J]. 中国高新技术企业2008(10): 83.
  TIAN P, WU Y D, XU Y K. Harmonic interference analysis and suppression technology[J]. China High Technology Enterprises2008(10): 83 (in Chinese).
20 MOFFET A. Minimum-redundancy linear arrays[J]. IEEE Transactions on Antennas and Propagation196816(2): 172-175.
21 李磊, 祁德元, 路翠华. 基于约束最小冗余线阵与干扰对消的测向方法[J]. 海军航空工程学院学报201328(4): 383-388.
  LI L, QI D Y, LU C H. Direction finding based on restricted minimum redundant linear arrays and interference canallation[J]. Journal of Naval Aeronautical and Astronautical University201328(4): 383-388 (in Chinese).
22 李博, 孙超. 基于最小冗余线阵的阵列扩展方法[J]. 传感技术学报201124(3): 392-397.
  LI B, SUN C. A new method for array extension based on minimum redundancy linear array[J]. Chinese Journal of Sensors and Actuators201124(3): 392-397 (in Chinese).
23 CHAUDHURY K N. On the convergence of the IRLS algorithm in non-local patch regression[J]. IEEE Signal Processing Letters201320(8): 815-818.
24 STRASZAK D, VISHNOI N K. IRLS and slime mold: Equivalence and convergence[DB/OL]. arXiv preprint: 1601.02712, 2016.
25 CHARTRAND R, YIN W T. Iteratively reweighted algorithms for compressive sensing[C]∥ 2008 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2008: 3869-3872.
Outlines

/