Special Topic: Deep Space Optoelectronic Measurement and Intelligent Awareness Technology

Laser phase noise compensation method in frequency scanning interferometry for absolute distance measurement

  • Zhongwen DENG ,
  • Shaogang GUO ,
  • Wenjun CHEN ,
  • Hengkang ZHANG ,
  • Haifeng SUN ,
  • Lirong SHEN ,
  • Xiaoping LI
Expand
  • 1.School of Space Science and Technology,Xidian University,Xi’an 710071,China
    2.Academy of Advanced Interdisciplinary Research,Xidian University,Xi’an 710071,China
    3.Space Optoelectronic Measurement and Perception Lab,Beijing Institute of Control Engineering,Beijing 100190,China
E-mail: zhk9321@163.com

Received date: 2024-04-22

  Revised date: 2024-05-06

  Accepted date: 2024-06-01

  Online published: 2024-06-21

Supported by

National Natural Science Foundation of China(52205576);Optoelectronic Measurement and Intelligent Perception Zhongguancun Open Lab(LabSOMP-2023-04);Natural Science Basic Research Program of Shaanxi(2021JQ-187)

Abstract

The technique of absolute distance measurement with laser Frequency Scanning Interferometry (FSI) holds immense potential for various space science missions and aerospace engineering applications. However, the laser phase noise from the tunable light source significantly degrades the distance measurement resolution over long distances. To address this issue, this paper establishes an FSI absolute distance measurement system with a fiber optic reference interferometer. On this basis, a laser phase noise compensation method is proposed based on the hierarchical decomposition of interferometric signal noise phase error terms. The effectiveness of the proposed laser phase noise compensation method is validated through simulation and experiment. Simulation results demonstrate that at distances of 100 m, 200 m, and 500 m, employing the proposed method enhances the signal-to-noise ratio of the interferometric signal from -23.06 dB, -32.95 dB, -40.21 dB to 33.97 dB, 33.98 dB, and 33.97 dB, respectively, significantly improving distance resolution. Experimental distance measurement results indicate that with a measured fiber length of 114.887 m, utilizing the proposed method elevates the signal-to-noise ratio of the interferometric signal from -19.08 dB to -2.22 dB, resulting in a notable enhancement in distance resolution.

Cite this article

Zhongwen DENG , Shaogang GUO , Wenjun CHEN , Hengkang ZHANG , Haifeng SUN , Lirong SHEN , Xiaoping LI . Laser phase noise compensation method in frequency scanning interferometry for absolute distance measurement[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(3) : 630561 -630561 . DOI: 10.7527/S1000-6893.2024.30561

References

1 ZHENG J H, JIA L H, ZHAI Y R, et al. High-precision silicon-integrated frequency-modulated continuous wave LiDAR calibrated using a microresonator[J]. ACS Photonics20229(8): 2783-2791.
2 PAN H, QU X H, ZHANG F M. Micron-precision measurement using a combined frequency-modulated continuous wave ladar autofocusing system at 60 meters standoff distance[J]. Optics Express201826(12): 15186-15198.
3 杨克元, 邓忠文, 陈文军, 等. 基于互补集合经验模态分解结合希尔伯特变换的光频扫描干涉信号相位提取方法[J]. 中国光学202316(3): 682-700.
  YANG K Y, DENG Z W, CHEN W J, et al. Phase-extracting method of optical frequency scanning interference signals based on the CEEMD-HT algorithm?[J]. Chinese Optics202316(3): 682-700 (in Chinese).
4 SHI G, WANG W, ZHANG F M. Precision improvement of frequency-modulated continuous-wave laser ranging system with two auxiliary interferometers[J]. Optics Communications2018411: 152-157.
5 LU C, XU Z Y, LIU G D, et al. FSI combined with heterodyne interferometer for non-cooperative targets distance measurement[J]. IEEE Photonics Technology Letters202234(2): 85-88.
6 许新科, 龙康, 徐靖翔, 等. 基于激光调频连续波正反向调谐色散对消方法[J]. 红外与毫米波学报202140(2): 243-247.
  XU X K, LONG K, XU J X, et al. The method of dispersion cancellation based on the forward and reverse tuning of a laser frequency-modulated continuous wave system[J]. Journal of Infrared and Millimeter Waves202140(2): 243-247 (in Chinese).
7 LIU Y, LIN J R, YANG L H, et al. Construction of traceable absolute distances network for multilateration with a femtosecond pulse laser[J]. Optics Express201826(20): 26618-26632.
8 JIA X Y, LIU Z G, DENG Z W, et al. Dynamic absolute distance measurement by frequency sweeping interferometry based Doppler beat frequency tracking model[J]. Optics Communications2019430: 163-169.
9 CABRAL A, ABREU M, REBORD?O J M. Dual-frequency sweeping interferometry for absolute metrology of long distances[J]. Optical Engineering201049(8): 085601.
10 SWINKELS B L, BHATTACHARYA N, BRAAT J J M. Correcting movement errors in frequency-sweeping interferometry[J]. Optics Letters200530(17): 2242-2244.
11 姚鑫, 李嘉敏, 王国永, 等. 面向星间激光干涉测距的高精度小型化验证系统[J]. 中国激光202249 (9): 0915001.
  YAO X, LI J M, WANG G Y, et al. High-precision miniatur-ized demonstration system for inter-satellite laser inter-ferometric ranging[J]. Chinese Journal of Lasers202249(9): 0915001. (in Chinese).
12 DU Y, LIU T G, DING Z Y, et al. Method for improving spatial resolution and amplitude by optimized deskew filter in long-range OFDR[J]. IEEE Photonics Journal20146(5): 7902811.
13 WARDEN M S. Precision of frequency scanning interferometry distance measurements in the presence of noise[J]. Applied Optics201453(25): 5800-5806.
14 DILAZARO T, NEHMETALLAH G. Phase-noise model for actively linearized frequency-modulated continuous-wave ladar[J]. Applied Optics201857(21): 6260-6268.
15 KOSHIKIYA Y, FAN X Y, ITO F. Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser[J]. Journal of Lightwave Technology200826(18): 3287-3294.
16 BADAR M, HINO T, IWASHITA K. Phase noise cancelled OFDR with cm-level spatial resolution using phase diversity[J]. IEEE Photonics Technology Letters201426(9): 858-861.
17 FENG Y X, XIE W L, MENG Y X, et al. High-performance optical frequency-domain reflectometry based on high-order optical phase-locking-assisted chirp optimization[J]. Journal of Lightwave Technology202038(22): 6227-6236.
18 XIE W L, MENG Y X, FENG Y X, et al. Optical linear frequency sweep based on a mode-spacing swept comb and multi-loop phase-locking for FMCW interferometry[J]. Optics Express202129(2): 604-614.
19 ITO F, FAN X Y, KOSHIKIYA Y. Long-range coherent ofdr with light source phase noise compensation[J]. 9th International Conference on Optical Communications and Networks (ICOCN 2010), 2010: 5-8.
20 DENG Z W, LIU Z G, JIA X Y, et al. Dynamic cascade-model-based frequency-scanning interferometry for real-time and rapid absolute optical ranging[J]. Optics Express201927(15): 21929-21945.
21 ZHANG X S, POULS J, WU M C. Laser frequency sweep linearization by iterative learning pre-distortion for FMCW LiDAR[J]. Optics Express201927(7): 9965-9974.
22 BEHROOZPOUR B, SANDBORN P A M, QUACK N, et al. Electronic-photonic integrated circuit for 3D microimaging[J]. IEEE Journal of Solid-State Circuits201752(1): 161-172.
Outlines

/