ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Effects of sideslip angle on shock wave interference structure of V-shaped blunt leading edge
Received date: 2024-05-15
Revised date: 2024-06-04
Accepted date: 2024-06-18
Online published: 2024-06-20
Supported by
National Natural Science Foundation of China(U20A2069);Natural Science Foundation of Fujian Province(2023J01046)
The impact mechanism of sideslip angle on shock wave interference structures at the V-Shaped Blunt Leading Edge (VSBLE) of a three-dimensional inward-turning inlet is studied through numerical simulation and theoretical analysis. The focus is on examining the types of shock wave interference at the VSBLE with a radius ratio of R/r = 4.5 and the variation trends of peak wall heat flux and pressure under conditions of Mach number 6 and sideslip angles ranging from 0° to 8°. Numerical simulation results show that regarding wave system interference structures, the types of primary shock interference and secondary shock interference on the windward side of the model do not change with the increase of the sideslip angle, whereas the type of secondary shock interference on the leeward side transitions from regular reflection to Mach reflection. To effectively predict the transition boundary of the secondary shock interference type, a theoretical analysis method of shock wave interference at the VSBLE under sideslip conditions is established based on the inviscid shock theory. It is found that with the increase of the sideslip angle, the flow parameters in the secondary shock interference regions on the windward and leeward sides shift towards values lower than the von Neumann boundary and higher than the detachment boundary, respectively. In terms of wall heat flux and pressure, changes in the sideslip angle lead to alterations in the heating/pressure peak values on the windward and leeward sides, displaying different variation patterns. The results from both theoretical and numerical simulations indicate that the variations of transmitted shock intensity and heating/pressure peak values with changes of sideslip angle are generally consistent. This shows that the change in transmitted shock intensity caused by variations in the sideslip angle is the key factor leading to different variation patterns in the heating/pressure peak values on the windward and leeward sides. This study can provide a reference for the aerodynamic heating/pressure load required for structural design at the VSBLE.
Luoyu RAO , Tao ZHANG , Chongguang SHI , Chengxiang ZHU , Yancheng YOU . Effects of sideslip angle on shock wave interference structure of V-shaped blunt leading edge[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(2) : 130681 -130681 . DOI: 10.7527/S1000-6893.2024.30681
1 | GRASSO F, PURPURA C, CHANETZ B, et al. Type III and type IV shock/shock interferences: Theoretical and experimental aspects[J]. Aerospace Science and Technology, 2003, 7(2): 93-106. |
2 | WIETING A R, HOLDEN M S. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8[J]. AIAA Journal, 1989, 27(11): 1557-1565. |
3 | 罗振兵, 谢玮, 解旭祯, 等. 激波及其干扰主动流动控制研究进展[J]. 航空学报, 2023, 44(15): 529002. |
LUO Z B, XIE W, XIE X Z, et al. Research progress of active flow control of shock wave and its interaction[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 529002 (in Chinese). | |
4 | SMART M K. Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition[J]. Journal of Propulsion and Power, 1999, 15(3): 408-416. |
5 | GRIPON E, MACH E. Ueber den Verlauf der Funkenwellen in der Ebene und in Raume (étude des mouvements vibratoires engendrés dans l’air par des étincelles électriques); Mémoires de l’Académie des Sciences de Vienne, Mai et juillet 1878[J]. Journal De Physique Théorique et Appliquée, 1879, 8(1): 94-100. |
6 | VON NEUMANN J. Oblique reflection of shocks:Explosives research report Rep.12[R]. 1943. |
7 | VON NEUMANN J. Refraction, intersection and reflection of shock waves: NAVORD report 203-245[R]. 1943. |
8 | KAWAMURA R, SAITO H. Reflection of shock waves-1 pseudo-stationary case[J]. Journal of the Physical Society of Japan, 1956, 11(5): 584-592. |
9 | EDNEY B. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock: NSA-22-049015-115 [R]. Wahington, D.C.:Office of Scientific and Technical Information, 1968. |
10 | BEN-DOR G, VASILEV E I, ELPERIN T, et al. Self-induced oscillations in the shock wave flow pattern formed in a stationary supersonic flow over a double wedge[J]. Physics of Fluids, 2003, 15(12): L85-L88. |
11 | 谢玮, 罗振兵, 周岩, 等. 高超声速双楔激波干扰定常射流控制试验研究[J]. 航空学报, 2024, 45(7):128813. |
XIE W, LUO Z B, ZHOU Y, et al. Experimental study on double wedge shock interaction control using steady jet in hypersonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2024. 45(7): 128813 (in Chinese). | |
12 | DRUGUET M C, CANDLER G V, NOMPELIS I. Effects of numerics on navier-stokes computations of hypersonic double-cone flows[J]. AIAA Journal, 2005, 43(3): 616-623. |
13 | TUMUKLU O, LEVIN D A, THEOFILIS V. Investigation of unsteady, hypersonic, laminar separated flows over a double cone geometry using a kinetic approach[J]. Physics of Fluids, 2018, 30(4): 046013. |
14 | PANARAS A G, DRIKAKIS D. High-speed unsteady flows around spiked-blunt bodies[J]. Journal of Fluid Mechanics, 2009, 632: 69-96. |
15 | OLEJNICZAK J, WRIGHT M J, CANDLER G V. Numerical study of inviscid shock interactions on double-wedge geometries[J]. Journal of Fluid Mechanics, 1997, 352: 1-25. |
16 | 程剑锐, 施崇广, 瞿丽霞, 等. 二维弯曲激波/湍流边界层干扰流动理论建模[J]. 航空学报, 2022, 43(9): 125993. |
CHENG J R, SHI C G, QU L X, et al. Theoretical model of 2D curved shock wave/turbulent boundary layer interaction[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 125993 (in Chinese). | |
17 | ZHONG X L. Application of essentially nonoscillatory schemes to unsteady hypersonic shock-shock interference heating problems[J]. AIAA Journal, 1994, 32(8): 1606-1616. |
18 | YOU Y C. An overview of the advantages and concerns of hypersonic inward turning inlets[C]∥ Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011. |
19 | GOLLAN R J, SMART M K. Design of modular shape-transition inlets for a conical hypersonic vehicle[J]. Journal of Propulsion and Power, 2013, 29(4): 832-838. |
20 | XIAO F S, LI Z F, ZHANG Z Y, et al. Hypersonic shock wave interactions on a V-shaped blunt leading edge[J]. AIAA Journal, 2018, 56(1): 356-367. |
21 | WANG D X, LI Z F, ZHANG Z Y, et al. Unsteady shock interactions on V-shaped blunt leading edges[J]. Physics of Fluids, 2018, 30(11): 116104. |
22 | LI Z F, ZHANG Z Y, WANG J, et al. Pressure-heat flux correlations for shock interactions on V-shaped blunt leading edges[J]. AIAA Journal, 2019, 57(10): 4588-4592. |
23 | ZHANG Z Y, LI Z F, YANG J M. Transitions of shock interactions on V-shaped blunt leading edges[J]. Journal of Fluid Mechanics, 2021, 912: A12. |
24 | 张英杰, 李祝飞, 张志雨, 等. 侧滑角对V字形钝化前缘激波振荡特性影响[J]. 推进技术, 2022, 43(11): 76-88. |
ZHANG Y J, LI Z F, ZHANG Z Y, et al. Effects of sideslip angle on shock oscillations of V-shaped blunt leading edge[J]. Journal of Propulsion Technology, 2022, 43(11): 76-88 (in Chinese). | |
25 | KANG D K, YAN C, LI Z H, et al. Shock interactions and heating predictions on a V-shaped blunt leading edge at Mach 6-12[J]. Physics of Fluids, 2023, 35(12): 126105. |
26 | ZHANG T, CHENG J R, SHI C G, et al. Mach reflection of three-dimensional curved shock waves on V-shaped blunt leading edges[J]. Journal of Fluid Mechanics, 2023, 975: A45. |
27 | LI S, YAN C, KANG D K, et al. Investigation of flow control methods for reducing heat flux on a V-shaped blunt leading edge under real gas effects[J]. Physics of Fluids, 2023, 35(3): 036113. |
28 | KANG D K, YAN C, LIU S J, et al. Modelling and shock control for a V-shaped blunt leading edge[J]. Journal of Fluid Mechanics, 2023, 968: A15. |
29 | LIU S J, YAN C, KANG D K, et al. Opposing jets for heat flux reduction and uncertainty analysis on a V-shaped blunt leading edge[J]. Aerospace Science and Technology, 2023, 138: 108353. |
30 | 张志雨. V字形钝前缘激波干扰及气动热/力特性研究[D]. 合肥: 中国科学技术大学, 2020: 15-16, 29. |
ZHANG Z Y. Study on shock wave interference and aerodynamic thermal/mechanical characteristics of V-shaped blunt leading edge[D].Hefei: University of Science and Technology of China, 2020: 15-16, 29 (in Chinese). | |
31 | SINCLAIR J, CUI X. A theoretical approximation of the shock standoff distance for supersonic flows around a circular cylinder[J]. Physics of Fluids, 2017, 29(2): 026102. |
32 | GAO B, WU Z N. A study of the flow structure for Mach reflection in steady supersonic flow[J]. Journal of Fluid Mechanics, 2010, 656: 29-50. |
33 | KEYES W, HAINS F D. Analytical and experimental studies of shock interference heating in hypersonic flows: 19730016556[R]. Washington, D. C.: NASA, 1973. |
34 | BEN-DOR G. Shock wave reflection phenomena[M]. New York: Springer, 1992. |
35 | MARKARIAN C F. Heat transfer in shock wave-boundary layer interaction regions[C]∥50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
/
〈 |
|
〉 |