ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Experiment on afterburner combustion efficiency based on self-excited sweeping nozzle
Received date: 2024-04-29
Revised date: 2024-05-13
Accepted date: 2024-05-31
Online published: 2024-06-17
Supported by
Advanced Jet Propulsion Innovation Center(HKCX2022-01-010);National Natural Science Foundation of China(52306052)
To prove the feasibility of applying the self-excited sweeping nozzle in the afterburner, and the effectiveness of high frequency dynamic sweeping fuel injection methods for improving the efficiency of afterburner combustion, this study designed a fuel spray bar integrated with the self-excited sweeping nozzles, tested its basic working characteristics, such as flow rate, frequency and sweeping angle, and further compared these characteristics with the plain-orifice spray bar. Then, based on the rectangular afterburner test rig, under the same test conditions and the fuel-to-air ratio range, the overall combustion efficiencies are tested and the dynamic wall pressure pulsation information is monitored, employing the plain-orifice spray bar and self-excited sweeping spray bar respectively. The results show that multiple self-sweeping nozzles can be integrated into the spray bar with the diameter limitation of 10mm. the flow capability of the self- excited sweeping spray bar is increased by 23%, compared to the plain-orifice spray bar with the equivalent geometric flow area. For the nozzles in the same spray bar, their operating frequency and sweeping angle responses to the pressure drop are basically the same and have good consistency. The afterburner combustion efficiency is improved by 3.7%, by employing the self-excited sweeping spray bar,and no dynamic pressure pulsation frequency is detected which is the same or close to the operating frequency of self-excited sweeping nozzle, indicating that high frequency dynamic sweeping fuel injection has no direct impact on the flame thermoacoustic oscillation mode and large scale shedding vortex structure downstream the flameholder.
Shiqi WANG , Quan WEN , Zhigang JIA , Yixin CHENG , Lin LI , Chi ZHANG , Weiye HUO , Liang MA . Experiment on afterburner combustion efficiency based on self-excited sweeping nozzle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(2) : 130621 -130621 . DOI: 10.7527/S1000-6893.2024.30621
1 | 季鹤鸣, 刘玉英. 涡扇加力与多功能排气装置[M]. 上海: 上海交通大学出版社, 2021. |
JI H M, LIU Y Y. Afterburner and multi-function exhaust system of turbofan engine[M]. Shanghai: Shanghai Jiao Tong University Press, 2021 (in Chinese). | |
2 | 罗莲军, 刘玉英, 张文龙, 等. 喷油杆与凹腔支板稳定器近距匹配雾化特性[J]. 航空动力学报, 2013, 28(11): 2462-2467. |
LUO L J, LIU Y Y, ZHANG W L, et al. Atomization characteristics of fuel injector and cavity-based strut flame stabilizer under close-range matching condition[J]. Journal of Aerospace Power, 2013, 28(11): 2462-2467 (in Chinese). | |
3 | 张孝春, 孙雨超, 刘涛. 先进加力燃烧室设计技术综述[J]. 航空发动机, 2014, 40(2): 24-30, 60. |
ZHANG X C, SUN Y C, LIU T. Summary of advanced afterburner design technology[J]. Aeroengine, 2014, 40(2): 24-30, 60 (in Chinese). | |
4 | 《航空发动机设计手册》总编委会. 航空发动机设计手册-第11册-加力燃烧室[M]. 第一版. 北京: 航空工业出版社, 2001. |
《Aero Engine Design Handbook》 Chief Editor Committee. Aero engine design handbook-volume 11-afterburner[M]. 1st ed. Beijing: Aviation Industry Press, 2001.(in Chinese). | |
5 | LOVETT J, BROGAN T, PHILIPPONA D, et al. Development needs for advanced afterburner designs: AIAA-2004-4192[R]. Reston: AIAA, 2004. |
6 | LEE J, LIN K C, EKLUND D. Challenges in fuel injection for high-speed propulsion systems[J]. AIAA Journal, 2015, 53(6): 1405-1423. |
7 | KIEL B, GARWICK K, LYNCH A, et al. Non-reacting and combusting flow investigation of bluff bodies in cross flow: AIAA-2006-5234[R]. Reston: AIAA, 2006. |
8 | SMITH C, NICKOLAUS D, LEACH T, et al. LES blowout analysis of premixed flow past V-gutter flameholder: AIAA-2007-0170[R]. Reston: AIAA, 2007. |
9 | KIEL B, GARWICK K, GORD J, et al. A detailed investigation of bluff body stabilized flames: AIAA-2007-0168[R]. Reston: AIAA, 2007. |
10 | BUSH S M, GUTMARK E J. Reacting and nonreacting flowfields of a V-gutter stabilized flame[J]. AIAA Journal, 2007, 45(3): 662-672. |
11 | SONG J, JUNG C, HWANG J, et al. An experimental study on the flame dynamics with V-gutter type flameholder in the model combustor: AIAA-2011-6126[R]. Reston: AIAA, 2011. |
12 | SASAKI M, TAKAHASHI M, SAKAMOTO H, et al. Spray and combustion characteristics of a liquid-fueled ramjet combustor: NAL-TR-1349T[R]. Tokyo: National Aerospace Laboratory, 1998. |
13 | INAMURA T, TAKAHASHI M, KUMAKAWA A. Combustion characteristics of a liquid-fueled ramjet combustor[J]. Journal of Propulsion and Power, 2001, 17(4): 860-868. |
14 | CROSS C, FRICKER A, SHCHERBIK D, et al. Dynamics of non-premixed bluff body-stabilized flames in heated air flow[R]. New York: ASME, 2010. |
15 | LOVETT J A, CROSS C, LUBARSKY E, et al. A review of mechanisms controlling bluff-body stabilized flames with closely-coupled fuel injection[R]. New York: ASME, 2012. |
16 | SHAW V G, GOMEZ R V, CLABBERS J, et al. Characterization of self-excited high frequency combustion instability in a bluff-body stabilized flame in vitiated flow: AIAA-2019-3862[R]. Reston: AIAA, 2019. |
17 | 刘玉英, 谢奕, 柳杨, 等. 凹腔支板火焰稳定器自燃点火性能初步试验[J]. 航空动力学报, 2018, 33(6): 1298-1304. |
LIU Y Y, XIE Y, LIU Y, et al. Preliminary experiment on spontaneous ignition performances of cavity-based strut flameholder[J]. Journal of Aerospace Power, 2018, 33(6): 1298-1304 (in Chinese). | |
18 | 张容珲, 刘玉英, 谢奕, 等. 燃油喷射方式对凹腔支板稳定器火焰传播性能的影响[J]. 推进技术, 2017, 38(9): 2046-2054. |
ZHANG R H, LIU Y Y, XIE Y, et al. Effects of fuel injection on flame propagation of cavity-based strut flameholder[J]. Journal of Propulsion Technology, 2017, 38(9): 2046-2054 (in Chinese). | |
19 | 邓爱明, 王中豪, 张军华, 等. 高性能经济可承受先进加力燃烧室技术 GOTChA分解[J]. 燃气涡轮试验与研究, 2019, 32(5): 53-57. |
DENG A M, WANG Z H, ZHANG J H, et al. GOTChA analysis of high performance affordable advanced afterburner technology[J]. Gas Turbine Experiment and Research, 2019, 32(5): 53-57 (in Chinese). | |
20 | 韩宗英, 颜应文, 刘云鹏, 等. 一种采用平面扇形喷嘴供油的加力燃烧室: CN108844094B[P]. 2020-07-07. |
HAN Z Y, YAN Y W, LIU Y P, et al. An afterburner fueled by fan nozzles: CN108844094B[P]. 2020-07-07 (in Chinese). | |
21 | 邸东, 刘雨辰, 王亚军, 等. 加力用扇形喷嘴雾化特性试验[J]. 航空动力学报, 2020, 35(3): 457-470. |
DI D, LIU Y C, WANG Y J, et al. Experiment on atomization characteristics of fan nozzle[J]. Journal of Aerospace Power, 2020, 35(3): 457-470 (in Chinese). | |
22 | 邸东. 加力环境下扇形喷嘴雾化特性研究[D]. 南京: 南京航空航天大学, 2021. |
DI D. Study on spray characteristics of fan nozzle in an afterburner environment[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
23 | 刘雨辰. 加力用扇形喷嘴雾化特性试验研究[D]. 南京: 南京航空航天大学, 2019. |
LIU Y C. Experimental study on atomization characteristics of fan nozzle for afterburner[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
24 | 王晓洁. 高温高速气流中直射式喷嘴与扇形喷嘴的雾化特性试验研究[D]. 镇江: 江苏大学, 2022. |
WANG X J. Experimental study on atomization characteristics of direct nozzle and fan nozzle in high temperature and high speed airflow[D]. Zhenjiang: Jiangsu University, 2022 (in Chinese). | |
25 | 施刚强, 吴杰, 胡喆, 等. 高温高速来流条件下扇形喷嘴雾化特性研究[J].推进技术, 2024, 45(6): 2302023. |
SHI G Q, WU J, HU Z, et al. Atomization character-istics of fan-shaped nozzle under high-speed and high-temperature[J]. Journal of Propulsion Technology, 2024, 45(6): 2302023 (in Chinese). | |
26 | CHANG J L, HE L J, CHEN L H, et al. Atomization of liquid pulsed jet in subsonic crossflow[J]. AIP Advances, 2023, 13(5): 055117. |
27 | CASTELINO N, GUTMARK E J. Numerical investigation of pulsed jets in supersonic crossflow using a high frequency actuator: AIAA-2021-1466[R]. Reston: AIAA, 2021. |
28 | 徐壮壮, 吴继平, 黄伟, 等. 超燃冲压发动机射流混合增强技术研究进展[J]. 战术导弹技术, 2021(4):83-102. |
XU Z Z, WU J P, HUANG W, et al. Research progress of jet mixing enhancement technology in scramjet engine[J]. Tactical Missile Technology, 2021(4): 83-102 (in Chinese). | |
29 | 常建龙, 陈连华, 赵永娟, 等. 横向射流液滴雾化研究现状分析[J]. 战术导弹技术, 2022(2): 29-36, 82. |
CHANG J L, CHEN L H, ZHAO Y J, et al. Analysis on research status of droplet atomization of jet in crossflow[J]. Tactical Missile Technology, 2022(2): 29-36, 82 (in Chinese). | |
30 | 王士奇, 陈健, 杨谦, 等. 自激扫掠喷嘴: 航空发动机燃油喷射新选择[J]. 航空动力, 2023 (3): 12-15. |
WANG S Q, CHEN J, YANG Q, et al. Self-excited sweeping nozzle: A new choice for aero engine fuel injection[J]. Aerospace Power, 2023(3): 12-15 (in Chinese). | |
31 | CUTLER A D, HARDING G C, DISKIN G S. High frequency pulsed injection into a supersonic duct flow[J]. AIAA Journal, 2013, 51(4): 809-818. |
32 | KOUCHI T, SASAYA K, WATANABE J, et al. Penetration characteristics of pulsed injection into supersonic crossflow: AIAA-2010-6645[R]. Reston: AIAA, 2010. |
33 | SUTARIYA J, KURIAN J. Enhancement of supersonic mixing with the help of pulsed injection: AIAA-2007- 5032[R]. Reston: AIAA, 2007. |
34 | 王士奇, 温泉. 新型自激扫掠喷嘴及其工作特性研究[J]. 推进技术, 2023, 44(10): 102-111. |
WANG S Q, WEN Q. Working characteristics of a new self-excited sweeping nozzle[J]. Journal of Propulsion Technology, 2023, 44(10): 102-111 (in Chinese). | |
35 | 王士奇, 温泉. 自激扫掠喷嘴工作特性的数值和实验研究[J/OL]. 航空动力学报, (2023-05-24)[2024-04-22]. . |
WANG S Q, WEN Q. Numerical and experimental study on working characteristics of self-excited sweeping nozzle[J/OL]. Journal of Aerospace Power, (2023-05-24)[2024-04-22]. (in Chinese). | |
36 | WOSZIDLO R, OSTERMANN F, SCHMIDT H J. Fundamental properties of fluidic oscillators for flow control applications[J]. AIAA Journal, 2019, 57(3): 978-992. |
37 | GREGORY J, TOMAC M N. A review of fluidic oscillator development and application for flow control: AIAA-2013-2474[R]. Reston: AIAA, 2013. |
38 | RAGHU S. Fluidic oscillators for flow control[J]. Experiments in Fluids, 2013, 54(2): 1455. |
39 | 王士奇. 流体振荡器—一种有前途的非稳态激励器[J]. 航空动力, 2022(1): 18-21. |
WANG S Q. Fluidic oscillator:A promising unsteady actuator[J]. Aerospace Power, 2022(1): 18-21 (in Chinese). | |
40 | HASSAN S H, EMARA A A, ELKADY M A. An influence of a fluidic oscillator insertion in a swirl-stabilized burner on turbulent premixed flame[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(6): 061001. |
41 | ?OSI? B, WA?MER D, GENIN F. Integration of fluidic nozzles in the new low emission dual fuel combustion system for MGT gas turbines[J]. Fluids, 2021, 6(3): 129. |
42 | 王士奇, 温泉, 韩啸, 等. 一种基于自激发扫掠振荡燃油喷嘴的中心分级燃烧室: CN113464982A[P]. 2021-10-01. |
WANG S Q, WEN Q, HAN X, et al. Central staged combustion chamber with self-excited sweeping oscillating fuel injection nozzles: CN113464982A[P]. 2021-10-01 (in Chinese). | |
43 | 王士奇, 温泉, 韩啸. 一种基于自激扫掠振荡燃油喷嘴的加力燃烧室结构: CN113280366A[P]. 2021-08-20. |
WANG S Q, WEN Q, HAN X, et al. An afterburner structure with self-excited sweeping oscillating fuel injection nozzles: CN113280366A?[P]. 2021-08-20 (in Chinese). | |
44 | 王士奇, 温泉, 刘英杰, 等. 一种亚毫米自激扫掠喷射振荡器: CN114370650A[P]. 2022-04-19. |
WANG S Q, WEN Q, LIU Y J, et al. A self-excited sweeping spray oscillator in sub-milimeter scale: CN114370650A[P]. 2022-04-19 (in Chinese). | |
45 | 马梁, 杨威, 王士奇, 等. 自激扫掠喷嘴气液两相流场特性研究[J]. 推进技术, 2024, 45(6): 110-119. |
MA L, YANG W, WANG S Q, et al. Gas-liquid two-phase flow field characteristics based on self-excited sweeping nozzle[J]. Journal of Propulsion Technology, 2024, 45(6): 110-119 (in Chinese). | |
46 | 王士奇, 温泉, 庄昕伟. 一种用于航空发动机的喷油杆及航空发动机: CN117722304A[P]. 2024-03-19. |
WANG S Q, WEN Q, ZHUANG X W. A fuel spray bar for aero-engine: CN117722304A[P]. 2024-03-19 (in Chinese). | |
47 | 王雅萱, 李磊, 李林, 等. 钝体液雾火焰热声振荡模态特性实验研究[C]∥中国工程热物理学会2023年度燃烧学术年会会议论文集. 合肥: 中国科学技术大学, 2023:234251. |
WANG Y X, LI Lei, LI Lin, et al. Experimental investigation on the mode characteristics of thermoacoustic oscillation from bluff body spray flame[C]∥China national symposium on combustion 2023 conference proceedings. Hefei: University of Science and Technology of China, 2023: 234251 (in Chinese). | |
48 | 方涛, 郭志辉, 苏贺. 模型燃烧室中值班火焰稳定器的燃烧不稳定性研究[J]. 推进技术, 2022, 43(10): 224-234. |
FANG T, GUO Z H, SU H. Combustion instability of pilot flame holder in model combustor[J]. Journal of Propulsion Technology, 2022, 43(10): 224-234 (in Chinese). | |
49 | XIE W, HU Z J, ZHAO W B, et al. Experimental and numerical studies on spray characteristics of an internal oscillating nozzle[J]. Atomization and Sprays, 2019, 29(1): 19-37. |
50 | 杨成刚. 液压气动技术与应用[M]. 北京: 化学工业出版社, 2021. |
YANG C G. Hydropneumatic technology and its application[M]. Beijing: Chemical Industry Press, 2021 (in Chinese). | |
51 | 吴晓明. 柱塞式液压泵(马达)变量控制及应用[M]. 北京: 机械工业出版社, 2022. |
WU X M. Variable control of plunger hydraulic pump (motor) and its application[M]. Beijing: China Machine Press, 2022 (in Chinese). | |
52 | 冷晓峰, 周知进, 李建华, 等. 轴向柱塞泵压力脉动特性研究现状[J]. 液压气动与密封, 2024, 44(2): 1-9. |
LENG X F, ZHOU Z J, LI J H, et al. Research status of pressure pulsation characteristics for axial piston pump[J]. Hydraulics Pneumatics and Seals, 2024, 44(2):1-9 (in Chinese). |
/
〈 |
|
〉 |