ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Construction of flight measurement model for folding wing structural load of aircraft
Received date: 2024-03-11
Revised date: 2024-04-29
Accepted date: 2024-06-05
Online published: 2024-06-17
Strain bridge for load measurement of aircraft folding wing structure will have serious nonlinear response problem in the load calibration ground test. Based on the structural force transmission characteristics and structural load measurement mechanism in the folding region, a piece-wise multivariate linear model is established, with the bending moment with respect to the folding boundary plane being taken as the state variable and the bending moment due to the gravity of the folding section as the boundary load. The method for determining flight measurement load by the piecewise model is presented. The flight test of load measurement of folding wing of a certain type of aircraft is conducted for verification. The results show that the load obtained by the piecewise model is closer to the actual load, and can significantly reduce the influence of the nonlinear response of the strain bridge on load measurement in the folding region and improve the accuracy of the load measurement. At the maximum positive load factor of the symmetric pull-up maneuver, the shear and bending moment obtained by the downward load model are 8.48% and 11.13% smaller than that obtained by the piecewise model, respectively. At the maximum negative load factor of the symmetric push-down maneuver, the shear and bending moment obtained by the upward load model are 14.87% and 12.83% larger than that obtained by the piecewise model, respectively. The research provides a theoretical basis and practical method for solving the nonlinear response problem of strain bridge for load measurement of the wing structure.
Jun LI , Huafei FAN , Fadong HE , Zhirui LI , Wenlong LI . Construction of flight measurement model for folding wing structural load of aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(23) : 230370 -230370 . DOI: 10.7527/S1000-6893.2024.30370
1 | 中国人民解放军总装备部. 军用飞机结构强度规范 第10部分:飞行试验: [S]. 北京:总装备部军标出版发行部, 2008. |
General Armament Department of PLA. Military airplane structural strength specification Part10:Flight tests: [S]. Beijing General Armaments Department of the PLA, 2008 (in Chinese). | |
2 | 中国民用航空局. 中国民用航空规章:CCAR-25-R4 [S]. 北京:中国民用航空局, 2011. |
Civil Aviation Administration of China. Chinese civil aviation regulations: CCAR-25-R4 [S]. Beijing: CAAC, 2011 (in Chinese). | |
3 | SKOPINSKI T H, AIKEN W S, HUSTON W B. Calibration of strain-gage installations in aircraft structures for the measurement of flight loads:NACA-TR-1178 [R]. Washington,D. C.:NASA,1954. |
4 | 李俊. 飞机结构载荷测量应变电桥热输出修正方法[J]. 空军工程大学学报(自然科学版), 2022, 23(1): 64-69. |
LI J. A thermal output correction method of strain-gage bridge for load measurement of aircraft structure[J]. Journal of Air Force Engineering University (Natural Science Edition), 2022, 23(1): 64-69 (in Chinese). | |
5 | 李俊, 蒋献. 飞机主动式余度作动舵面铰链力矩飞行测量方法[J]. 空军工程大学学报, 2023, 24(3): 43-49. |
LI J, JIANG X. A flight measurement method for hinge moment of aircraft control surface with redundant actuation system in active mode [J]. Journal of Air Force Engineering University, 2023, 24(3): 43-49 (in Chinese). | |
6 | 赵燕, 周占廷, 万小鹏. 剖面内加载对飞行测量载荷的影响[J]. 机械强度, 2017, 39(5): 1061-1065. |
ZHAO Y, ZHOU Z T, WAN X P. The effection of loading inside strain-gage station on flight load measurement[J]. Journal of Mechanical Strength, 2017, 39(5):1061-1065 (in Chinese). | |
7 | 赵燕, 周占廷. 某中央翼盒对飞行载荷实测的影响[J]. 航空学报, 2016, 37(12): 3713-3720. |
ZHAO Y, ZHOU Z T. Effect of central wing on root flight load measurement of certain airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12): 3713-3720 (in Chinese). | |
8 | 张海涛, 余建虎, 李志蕊, 等. T型尾翼布局的尾翼载荷测量技术[J]. 航空学报, 2019, 40(3): 122074. |
ZHANG H T, YU J H, LI Z R, et al. Measurement technology for vertical fin load of T-shape empennage layout[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 122074 (in Chinese). | |
9 | JECKINS J M, DEANGELIS V M. A summary of numerous strain-gage load calibrations on aircraft wings and tails in a technology format: NASA-TM-4804[R]. Washington, D. C.: NASA, 1997. |
10 | LOKOS W A, STAUF R. Strain-gage loads calibration parametric study: NASA/TM-2004-212853[R]. Washington, D. C.: NASA, 2004. |
11 | LOKOS W, OLNEY C, CHEN T, et al. Strain-gage loads calibration testing of the active aeroelastic wing F/A-18 aircraft[C]∥ 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2002: 2926. |
12 | 郭正旺, 周友明. 结构完整性试飞-飞机载荷与强度试飞[M]. 北京: 航空工业出版社, 2018: 18-51. |
GUO Z W, ZHOU Y M. Flight test of structural integrity- flight test of aircraft load and strength[M]. Beijing: Aviation Industry Press, 2018: 18-51 (in Chinese). | |
13 | 孟敏, 蒋献, 贾天娇. 基于虚拟载荷校准试验的襟翼曲柄测载方法[J]. 航空学报, 2020, 41(2): 223408. |
MENG M, JIANG X, JIA T J. A flap crank load measurement method based on virtual load calibration test[J]. Acta Aeronautica et Astronautica Sinica, 2020,41(2): 223408 (in Chinese). | |
14 | 余建虎. 飞机飞行载荷校准试验约束补偿技术[J]. 航空学报, 2023, 44(19): 227500. |
YU J H. Constraint compensation technology on aircraft loads calibration test[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 227500 (in Chinese). | |
15 | 李文龙, 吴波, 谢帅. 有起落架布置的翼身整体结构机翼载荷测量技术[J]. 航空学报, 2024, 45(1): 229525. |
LI W L, WU B, XIE S. Technology of wing load measurement for wing-body integrated structure with landing gear layout[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 229525 (in Chinese). | |
16 | RAAB C, ROHDE-BRANDENBURGER K. Dynamic flight load measurements with MEMS pressure sensors[J]. CEAS Aeronautical Journal, 2021, 12(4): 737-753. |
17 | 王志瑾, 姚卫星. 飞机结构设计[M]. 北京: 国防工业出版社, 2007: 43-102. |
WANG Z J, YAO W X. Aircraft structural design[M]. Beijing: National Defense Industry Press, 2007: 43-102 (in Chinese). | |
18 | 曹奇凯, 王鄢, 姚念奎, 等. 先进舰载战斗机强度设计技术发展与实践[J]. 航空学报, 2021, 42(8): :525793. |
CAO Q K, WANG Y, YAO N K, et al. Development and application of strength design technology of advanced carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525793 (in Chinese). | |
19 | 曹景涛, 高尚. 液压多点协调加载技术在机翼载荷校准试验中的应用[J]. 航空科学技术, 2015, 26(5): 71-75. |
CAO J T, GAO S. Application of hydraulic multipoint coordinate loading technology in load calibration test of airfoil[J]. Aeronautical Science & Technology, 2015, 26(5): 71-75 (in Chinese). | |
20 | 何发东, 吴波, 李志蕊. 飞机载荷校准试验区域加载技术[J]. 北京航空航天大学学报, 2023, 49(10): 2867-2872. |
HE F D, WU B, LI Z R. Zone loading technology for aircraft load calibration test[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(10): 2867-2872 (in Chinese). | |
21 | 王黎明, 陈颖, 杨楠. 应用回归分析[M]. 2版. 上海: 复旦大学出版社, 2018: 146-160. |
WANG L M, CHEN Y, YANG N. Applied regression analysis[M]. 2nd ed. Shanghai: Fudan University Press, 2018: 146-160 (in Chinese). |
/
〈 |
|
〉 |