Reviews

Research progress of ground flutter simulation test technology

  • Guiwei ZHANG ,
  • Zhaoqing LIU ,
  • Lei ZHU ,
  • Heng ZHANG ,
  • Wei TIAN ,
  • Weiguang LI ,
  • Zhichun YANG
Expand
  • 1.School of Aeronautics,Northwestern Polytechnic University,Xi’an 710072,China
    2.Xi’an Institute of Applied Optics,Xi’an 710065,China
    3.National Key Laboratory of Strength and Structural Integrity,Xi’an 710072,China
E-mail: yangzc@nwpu.edu.cn

Received date: 2023-06-27

  Revised date: 2023-07-26

  Accepted date: 2023-09-22

  Online published: 2023-10-25

Supported by

111 Project(BP0719007)

Abstract

Flutter is a kind of aeroelastic dynamic stability problem that should be avoided during flight and may lead to disastrous consequences. Ground Flutter Simulation Test (GFST) is an emerging method for flutter testing, which directly uses the prototype structure or model structure of the aircraft as the test object and is a semi-physical simulation test technique. Aerodynamic simulation loading devices, such as shakers, are used to simulate the distributed aerodynamic loads on the structure, so that the aeroelastic stability characteristics of the real structure can be obtained on the ground (outside the wind tunnel). In this paper, the research status of GFST technology is analyzed from three aspects: reduced-order real-time reconstruction of the unsteady aerodynamic, unsteady aerodynamic simulation loading, and implementation of GFST. Future development directions of the GFST technology are also discussed.

Cite this article

Guiwei ZHANG , Zhaoqing LIU , Lei ZHU , Heng ZHANG , Wei TIAN , Weiguang LI , Zhichun YANG . Research progress of ground flutter simulation test technology[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(10) : 29229 -029229 . DOI: 10.7527/S1000-6893.2024.29229

References

1 谷迎松, 杨智春, 赵令诚. 飞行器气动弹性力学教程[M]. 西安: 西北工业大学出版社, 2021: 58-60.
  GU Y S, YANG Z C, ZHAO L C. Course of aeroelastic mechanics of aircraft[M]. Xi’an: Northwestern Polytechnical University Press, 2021: 58-60 (in Chinese).
2 张桂玮, 谭光辉, 徐钦炜, 等. 地面颤振模拟试验中加载系统动态特性的影响研究[J]. 振动与冲击202039(16): 214-221, 260.
  ZHANG G W, TAN G H, XU Q W, et al. A study on the impact of dynamic characteristics of a loading system in ground flutter simulation[J]. Journal of Vibration and Shock202039(16): 214-221, 260 (in Chinese).
3 侯英昱, 付志超, 朱剑, 等. 气动力模拟非接触式加载方法研究[J]. 空气动力学学报201836(2): 357-361.
  HOU Y Y, FU Z C, ZHU J, et al. Research on contactless loading method for aerodynamic force test[J]. Acta Aerodynamica Sinica201836(2): 357-361 (in Chinese).
4 HOU Y Y, LIU Z Q. Aeroelastic test of large flexible structure based on electromagnetic dry wind tunnel[C]∥Asia-Pacific International Symposium on Aerospace Technology. Singapore: Springer, 2019: 2684-2691.
5 侯英昱, 刘子强. 基于电磁干风洞的大柔性结构准模态试验研究[J]. 空气动力学学报201937(1): 115-120.
  HOU Y Y, LIU Z Q. Quasi modal test of large flexible structure based on electromagnetic dry wind tunnel[J]. Acta Aerodynamica Sinica201937(1): 115-120 (in Chinese).
6 HOU Y Y, ZHU J, FU Z C. Computer aided physical test technology[C]∥Proceedings of the 4th International Conference on Computer Science and Application Engineering. New York: ACM, 2020.
7 HOU Y Y, LI Q, ZHANG Z Q. Unsteady aerodynamic simulation test based on ampere force and electromagnetic field[J]. Journal of Physics: Conference Series20222242(1): 012037.
8 赵永辉. 气动弹性力学与控制[M]. 北京: 科学出版社, 2007: 234-237.
  ZHAO Y H. Aeroelastic mechanics and control[M]. Beijing: Science Press, 2007: 234-237 (in Chinese).
9 万志强, 杨超. 飞行器飞行载荷分析与气动弹性优化[M]. 北京: 航空工业出版社, 2021: 83-95.
  WAN Z Q, YANG C. Flight load analysis and aeroelastic optimization of aircraft[M]. Beijing: Aviation Industry Press, 2021: 83-95 (in Chinese).
10 宋巧治. 基于鲁棒控制的多点激励力控制系统设计[D]. 西安:西北工业大学, 2014:31-57.
  SONG Q Z. Multi exciting force control system design based on robust control[D]. Xi’an: Northwestern Polytechnical University, 2014:31-57 (in Chinese).
11 ZENG J, KINGSBURY D, RITZ E, et al. GVT-based ground flutter test without wind tunnel[C]∥Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011.
12 胡巍, 杨智春, 谷迎松. 带操纵面机翼气动弹性地面试验仿真系统中的气动力降阶方法[J]. 西北工业大学学报201331(5): 810-815.
  HU W, YANG Z C, GU Y S. A new and effective method for reducing order of aerodynamics of a wing with control surface for ground flutter test[J]. Journal of Northwestern Polytechnical University201331(5): 810-815 (in Chinese).
13 许云涛. 地面颤振模拟试验方法研究[D]. 北京:北京航空航天大学, 2012:10-24.
  XU Y T. Studies on method of the ground flutter simulation test[D]. Beijing: Beihang University, 2012:10-24 (in Chinese).
14 叶正寅, 张伟伟, 史爱明, 等. 流固耦合力学基础及其应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2010: 226-227.
  YE Z Y, ZHANG W W, SHI A M,et al. Fundamentals of fluid-structure coupling and its application[M]. Harbin: Harbin Institute of Technology Press, 2010: 226-227 (in Chinese).
15 WANG B W, FAN X L. Ground flutter simulation test based on reduced order modeling of aerodynamics by CFD/CSD coupling method[J]. International Journal of Applied Mechanics201911(1): 1950008.
16 宋巧治, 王彬文, 李晓东. 基于CFD的地面颤振模拟试验非定常气动力重构方法研究[J]. 振动与冲击202241(10): 40-46.
  SONG Q Z, WANG B W, LI X D. Unsteady aerodynamic model reproduction method for ground flutter simulation test based on CFD[J]. Journal of Vibration and Shock202241(10): 40-46 (in Chinese).
17 JOHNSON M. Finite-state airloads for deformable airfoils on fixed and rotating wings[C]∥International Mechanical Engineering Congress and Exposition, 1994.
18 LEE B H K, GONG L, WONG Y S. Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity[J]. Journal of Fluids and Structures199711(3): 225-246.
19 王俊蛟. 非定常气动铰链力矩理论分析与试验系统研究[D]. 北京: 北京交通大学, 2018: 11-64.
  WANG J J. Theoretical analysis and experimental research on unsteady aerodynamic hinge moment[D]. Beijing: Beijing Jiaotong University, 2018: 11-64 (in Chinese).
20 邓智, 宋汉文. 基于反馈控制的桥梁节段模型干风洞实验仿真[J]. 振动与冲击201736(5): 120-126.
  DENG Z, SONG H W. Simulation for a bridge section model’s wind tunnel test based on feedback control[J]. Journal of Vibration and Shock201736(5): 120-126 (in Chinese).
21 KEARNS J P. Flutter simulator: US3015948[P]. 1962-01-09.
22 SU W H, SONG W. A real-time hybrid aeroelastic simulation platform for flexible wings[J]. Aerospace Science and Technology201995: 105513.
23 SU W H, SONG W, HILL V. Real-time hybrid simulation and experiment for aeroelastic testing of flexible wings[C]∥Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019.
24 SU W H, SONG W. Stability of real-time hybrid aeroelastic simulations with actuation and sensor measurement delays[C]∥AIAA SCITECH 2022 Forum. Reston: AIAA, 2022.
25 KEARNS J P. Missile-wing flutter simulation[R]. Johns Hopkins University Applied Physics Laboratory Technical Digest, 1963.
26 WU Z G, CHU L F, YUAN R Z, et al. Studies on aeroservoelasticity semi-physical simulation test for missiles[J]. Science China Technological Sciences201255(9): 2482-2488.
27 LISEYKIN G V, MARKIN I V, PRONIN M A, et al. Physical model vibration modeling using artificial flow[J]. TsAGI Science Journal201950(1): 103-113.
28 BYKOV A V, KONDRASHEV G V, PARAFES’ S G, et al. Methods for investigating the unmanned aerial vehicle electric actuator performance in aeroelasticity tasks[J]. Russian Aeronautics (Iz VUZ)201659(3): 331-337.
29 WU Z G, ZHANG R J, MA C J, et al. Aeroelastic semiphysical simulation and wind-tunnel testing validation of a fin-actuator system[J]. Journal of Aircraft201754(1): 235-245.
30 SMYSLOV V I. Tasks of the modal test and reproduction of forces by means of electromechanical simulation[J]. TsAGI Science Journal201748(8): 761-771.
31 BARANOV N, VASILJEV K, NARIZHNY A, et al. Experimental investigation of the all-flying stabilizer flutter with nonlinear characteristics in the control links using aerodynamic forces electromechanical simulation[J]. Uchenye Zapiski TsAGI1983, XIV(3) (in Russian).
32 LISEYKIN G, BOGATYREV M, PRONIN M, et al. Research on dynamic stability of an elastic model using tests in artificial flow[C]∥16th International Forum on Aeroelasticity and Structural Dynamics,2015.
33 NARYZHNY A, PEDORA A, SMYSLOV V. Vibration tests with airflow simulation in the aeroelastic investigations on dynamically scaled models[J]. Uchenye Zapiski TsAGI2001, 32(1–2) (in Russian).
34 潘树祥, 齐丕骞. 地面模拟热颤振试验研究[J]. 强度与环境198411(2): 8-12.
  PAN S X, QI P Q. Experimental study on ground simulated thermal flutter[J]. Structure & Environment Engineering198411(2): 8-12 (in Chinese).
35 DHITAL K, HAN J H, LEE Y K. Approximation of distributed aerodynamic force to a few concentrated forces for studying supersonic panel flutter[J]. Transactions of the Korean Society for Noise and Vibration Engineering201626(5): 518-527.
36 KARPEL M. Extensions to the minimum-state aeroelastic modeling method[J]. AIAA Journal199129(11): 2007-2009.
37 胡巍. 变体飞行器动力学建模及气动弹性特性研究[D]. 西安: 西北工业大学, 2017.
  HU W. Dynamic modeling and aeroelastic characteristics of variant aircraft[D].Xi’an: Northwestern Polytechnical University, 2017 (in Chinese).
38 宋巧治, 李晓东. 平板翼颤振地面模拟试验机理研究[J]. 结构强度研究2016(1):1-7.
  SONG Q Z, LI X D. Study on the mechanism of flutter ground simulation test of flat wing [J]. Structural Strength Research2016 (1):1-7 (in Chinese).
39 DHITAL K, HAN J H. Panel flutter emulation using a few concentrated forces[J]. International Journal of Aeronautical and Space Sciences201819(1): 80-88.
40 李秋彦, 李刚, 魏洋天, 等. 先进战斗机气动弹性设计综述[J]. 航空学报202041(6): 523430.
  LI Q Y, LI G, WEI Y T, et al. Review of aeroelasticity design for advanced fighter[J]. Acta Aeronautica et Astronautica Sinica202041(6): 523430 (in Chinese).
41 陈浩宇, 王彬文, 宋巧治, 等. 热颤振地面模拟试验技术[J]. 航空学报202344(8): 227295.
  CHEN H Y, WANG B W, SONG Q Z, et al. Thermal flutter ground simulation test[J]. Acta Aeronautica et Astronautica Sinica202344(8): 227295 (in Chinese).
42 陈浩宇, 王彬文, 宋巧治, 等. 时变系统地面颤振模拟试验方法研究[J]. 应用力学学报202239(4): 633-641.
  CHEN H Y, WANG B W, SONG Q Z, et al. Research on the ground flutter simulation test method for time-varying system[J]. Chinese Journal of Applied Mechanics202239(4): 633-641 (in Chinese).
43 许云涛, 吴志刚, 杨超. 地面颤振模拟试验中的非定常气动力模拟[J]. 航空学报201233(11): 1947-1957.
  XU Y T, WU Z G, YANG C. Simulation of the unsteady aerodynamic forces for ground flutter simulation test[J]. Acta Aeronautica et Astronautica Sinica201233(11): 1947-1957 (in Chinese).
44 高博. 地面颤振试验系统动力学建模与控制仿真技术研究[D]. 北京: 中国航天科技集团公司第一研究院, 2018: 12-59.
  GAO B. Study on simulation technology of dynamical modeling and controller for the ground flutter test system[D].Beijing: China Academy of Launch Vehicle Technology, 2018: 12-59 (in Chinese).
45 宋巧治, 王彬文, 李晓东. 基于机翼颤振风洞试验模型的地面颤振模拟试验验证[J]. 工程与试验202161(2): 3-7.
  SONG Q Z, WANG B W, LI X D. Ground flutter simulation test validation based on wing flutter wind tunnel test model[J]. Engineering & Test202161(2): 3-7 (in Chinese).
46 黎伟明, 宋巧治, 刘继军. 地面颤振试验系统气动插值点优化配置方法研究[J]. 应用力学学报202239(3): 445-451.
  LI W M, SONG Q Z, LIU J J. Sensor and shaker locations optimization of the ground flutter test system[J]. Chinese Journal of Applied Mechanics202239(3): 445-451 (in Chinese).
47 DHITAL K, HAN J H. Subsonic flutter emulation of composite laminate using a few concentrated forces[C]∥21st International Conference on Composite Materials, 2017.
48 YUN J M, HAN J H. Development of ground vibration test based flutter emulation technique[J]. The Aeronautical Journal2020124(1279): 1436-1461.
49 YUN J M, HAN J H. Application of ground flutter emulation test technique for the passive flutter suppression effect validation[J]. International Journal of Aeronautical and Space Sciences202122(6): 1344-1355.
50 WU Z G, MA C J, YANG C. New approach to the ground flutter simulation test[J]. Journal of Aircraft201653(5): 1578-1580.
51 KEARNS J. A ground flutter simulator[R]. Laurel: Johns Hopkins University Applied Physics Laboratory, 1957.
52 KEARNS J. Flutter simulation[R]. Laurel: Johns Hopkins University Applied Physics Laboratory, 1962.
53 曹登庆, 李基鹏, 邵崇晖. 一种分布式气动力与有限激振点激振载荷的等效方法: CN113218615A[P]. 2021-08-06.
  CAO D Q, LI J P, SHAO C H. Distributed aerodynamic force and finite excitation point excitation load equivalence method: CN113218615A[P]. 2021-08-06 (in Chinese).
54 刘楚源. 基于特征值跟踪的气动弹性载荷等效与简化[D]. 上海: 同济大学, 2019: 47-63.
  LIU C Y. Equivalent and simplified aeroelastic load based on eigenvalue tracking[D].Shanghai: Tongji University, 2019: 47-63 (in Chinese) .
55 刘楚源, 刘泽森, 宋汉文. 基于主动控制策略的机翼颤振特性模拟[J]. 力学学报201951(2): 333-340.
  LIU C Y, LIU Z S, SONG H W. The simulation of airfoil flutter characteristic based on active control strategy[J]. Chinese Journal of Theoretical and Applied Mechanics201951(2): 333-340 (in Chinese).
56 ZHANG Z, GAO B, WANG J, et al. A generalised force equivalence-based modelling method for a dry wind-tunnel flutter test system[J]. The Aeronautical Journal2021125(1286): 720-741.
57 俄)茹科夫斯基中央空气流体动力研究院主编. 李志译. 气动弹性[M]. 上海: 上海交通大学出版社, 2020: 383-400.
  Zhukovsky Central Air Fluid Power Research Institute. LI Z translated.Aeroelastic theory and practice[M]. Shanghai: Shanghai Jiao Tong University Press, 2020: 383-400 (in Chinese).
58 ZHANG G W, YANG Z C, GU Y S. New approach to aerodynamic reduction in ground flutter simulation based on generalized aerodynamics[C]∥Proceeding of 26th International Congress on Sound and Vibration, 2019.
59 张桂玮, 杨智春, 宋巧治, 等. 一种基于广义气动力的非定常气动力降阶方法: CN109933876A[P]. 2019-06-25.
  ZHANG G W, YANG Z C, SONG Q Z, et al. New approach to order reduction of aerodynamic force based on generalized aerodynamic forces: CN109933876A[P]. 2019-06-25 (in Chinese).
60 张桂玮. 考虑激振器特性的地面颤振模拟试验[D]. 西安:西北工业大学, 2022: 21-113.
  ZHANG G W. Study of ground flutter simulation test considering electrodynamic shaker characteristics[D]. Xi’an: Northwestern Polytechnical University, 2022:21-113 (in Chinese).
61 邵崇晖. 超声速流中壁板颤振的抑制和地面试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 72-84.
  SHAO C H. Suppression of nonlinear panel flutter in the supersonic flow and ground flutter test[D].Harbin: Harbin Institute of Technology, 2017: 72-84 (in Chinese).
62 KARKLE P, NARIZHNY A, SMYSLOV V. Test bench investigation of random aircraft vibrations using electromechanical simulation of aerodynamic forces under different flight conditions.[J]. Uchenye Zapiski TsAGI1998, XXIX(1-2):157-164 (in Russian).
63 SMYSLOV V, DIJKSTRA K, KARKLE P. The experience in ground vibration tests of flexible flying vehicles using PRODERA equipment and some additional tasks[C]∥European Conference for Aerospace Sciences (EUCASS), 2005.
64 SMYSLOV V. Study of problems of aeroelastic stability of flight vehicles with playback of the aerodynamic forces at low Strouhal numbers[J]. Zapiski TsAGI200637(1-2): 99-105.
65 LISEYKIN G, BOGATYREV M, PRONIN M, et al. Structural nonlinearities simulation on the flutter electromechanical modeling test bench[C]∥29th Congress of International Council of the Aeronautical Sciences, 2014.
66 ORLOVA O, PRONIN M, SMYSLOV V. Numerical simulation and experimental flutter research of an aircraft with asymmetric control surfaces[C]∥17th International roelasticity and Structural Dynamics, IFASD, 2017.
67 LEONTEVA R V, SMYSLOV V I. Features of simulating the force actions from a damaged engine at ground vibration tests of an airplane[J]. TsAGI Science Journal201647(6): 649-663.
68 LEONTEVA R, PRONIN M, SMYSLOV V. Modeling of forced vibrations of the airplane with the engine imbalance аt ground resonance tests[C]∥17th International Forum on Aeroelasticity and Structural Dynamics, 2017.
69 SONG Q Z, YANG Z C, WANG W. Robust control of exciting force for vibration control system with multi-exciters[J]. Science China Technological Sciences201356(10): 2516-2524.
70 郭嘉瑞. 激励力源系统动力学特性研究[D]. 太原: 中北大学, 2020: 52-73.
  GUO J R. Research on dynamic characteristics of excitation force source system[D].Taiyuan: North University of China, 2020: 52-73 (in Chinese).
71 MA C J, WU Z, YANG C. Determination of the dynamic characteristics of a multi-point excitation system using electrodynamic shakers and control of their exciting force[J]. Journal of Vibration Engineering & Technologies20164(2):161-173.
72 YUN J M, HAN J H, LEE Y K. MIMO force control of electro-dynamic shaker system using inverse transfer function based controller[J]. Transactions of the Korean Society for Noise and Vibration Engineering201828(1): 5-13.
73 TOMLINSON G R. Force distortion in resonance testing of structures with electro-dynamic vibration exciters[J]. Journal of Sound and Vibration197963(3): 337-350.
74 RAO D K. On the glitches in the force transmitted by an electrodynamic exciter to a structure[C]∥Proceeding of 58th Shock and Vibration Symposium, 1987.
75 OLSEN N. Using and understanding electrodynamic shakers in modal applications[C]∥Proceedings of the 4th International Modal Analysis Conference, 1986:1160-1167.
76 RAO D. Electrodynamic interaction between a resonating structure and an exciter[C]∥Proceedings of the 5th International Modal Analysis Conference, 1987:1142-1150.
77 LANG G. Electrodynamic shaker fundamentals[J]. Sound and Vibration199731: 14-23.
78 LANG G F, SNYDER D. Understanding the physics of electrodynamic shaker performance[J]. Sound and Vibration200135(10): 24-33.
79 SARASWAT A, TIWARI N. Modeling and study of nonlinear effects in electrodynamic shakers[J]. Mechanical Systems and Signal Processing201785: 162-176.
80 OLIVEIRA L, VAROTO P. The effects of armature rotation on data quality in base driven shaker testing[C]∥ISMA 27-International Conference on Noise and Vibration Engineering. 2002.
81 WAIMER S, MANZATO S, PEETERS B, et al. A multiphysical modelling approach for virtual shaker testing correlated with experimental test results[M]∥ Special Topics in Structural Dynamics, Volume 6. Cham: Springer International Publishing, 2016: 87-99.
82 HOFFAIT S, MARIN F, SIMON D, et al. Measured-based shaker model to virtually simulate vibration sine test[J]. Mechanical Systems and Signal Processing20164: 1-7.
83 HOFFAIT S, MARIN F, SIMON D, et al. Virtual shaker testing at V2i: Measured-based shaker model and industrial test case[C]∥Proceedings of 27th International Conference on Noise and Vibration Engineering and International Conference on Uncertainty in Structural Dynamics, 2016: 1013-1026.
84 ZUO S G, FENG Z Y, PAN J, et al. Electromechanical coupling dynamic modeling and analysis of vertical electrodynamic shaker considering low frequency lateral vibration[J]. Advances in Mechanical Engineering202012(10): 168781402096385.
85 RAO D K, DILL J, ZORZI E. Magnetic suspension characteristics of electromagnetic actuators[R]. 1993.
86 TOMLINSON G. A simple theoretical and experimental study of the force characteristics from electrodynamic exciters on linear and nonlinear systems[C]∥Proceedings of the 5th International Modal Analysis Conference, 1987.
87 VAROTO P S, DE OLIVEIRA L P R. Interaction between a vibration exciter and the structure under test[J]. Sound and Vibration200236(10): 20-26.
88 VAROTO P S, DE OLIVEIRA L P R. On the force drop off phenomenon in shaker testing in experimental modal analysis[J]. Shock and Vibration20029(4-5): 165-175.
89 DE OLIVEIRA L P R, VAROTO P S, PERES M A S. Shaker structure interaction: Overview and updated results[C]∥Proceeding of 18th International Congress on Sound and Vibration, 2011: 2516-2523.
90 PACINI B R, KUETHER R J, ROETTGEN D R. Shaker-structure interaction modeling and analysis for nonlinear force appropriation testing[J]. Mechanical Systems and Signal Processing2022162: 108000
91 ZHANG G W, WANG X C, YANG Z C. Study on excitation force characteristics in a coupled shaker-structure system considering structure modes coupling[J]. Chinese Journal of Aeronautics202235(7): 227-245.
92 DARGAH M. Effects of the shaker impedance and transducer cross-axis sensitivity in frequency response function estimation[D]. Cincinnati :University of Cincinnati, 2012.
93 DARGAH M H P, ALLEMANG R J, PHILLIPS A W. Exciter impedance and cross-axis sensor sensitivity issues in FRF estimation[C]∥Topics in Modal Analysis I, Volume 5. New York: Springer, 2012: 535-545.
94 PERES M, KALLMEYER C, WITTER M C, et al. Advantages of Multiple-Input Multiple-Output (MIMO) testing using low level excitation systems[C]∥Proceedings of the 26th International Conference on Noise and Vibration Engineering, 2014.
95 PERES M, KALLMEYER C, WITTER M C, et al. Advantages of multiple-input multiple-output testing[J]. Sound and Vibration201549(8): 8-12.
96 MAYES R, ANKERS L, DABORN P, et al. Optimization of shaker locations for multiple shaker environmental testing[J]. Experimental Techniques202044(3): 283-297.
97 张忠, 高博, 原凯, 等. 电磁激振器建模与实时控制方法研究[J]. 强度与环境201845(5): 25-31.
  ZHANG Z, GAO B, YUAN K, et al. Modeling and real-time control method for electromagnetic exciter[J]. Structure and Environment Engineering201845(5): 25-31 (in Chinese).
98 SCHULTZ R. Vibration test design with integrated shaker electro-mechanical models[C]∥Dynamic Substructures, Volume 4. Cham: Springer, 2021: 63-72.
99 ZHANG G W, LI W G, WANG X C, et al. Influence of flexible structure vibration on the excitation forces delivered by multiple electrodynamic shakers[J]. Mechanical Systems and Signal Processing2022169: 108753.
100 MA C J, WU Z G, YANG C. Mechanical characteristics of electromagnetic shakers and its force control[C]∥Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014.
101 王彬文, 宋巧治, 陈浩宇. 高超声速飞行器地面颤振评估技术研究[J]. 南京航空航天大学学报202254(5): 899-907.
  WANG B W, SONG Q Z, CHEN H Y. Study on ground flutter test method for Hypersonic vehicle[J]. Journal of Nanjing University of Aeronautics & Astronautics202254(5): 899-907 (in Chinese).
102 许云涛, 吴志刚, 杨超. 地面颤振模拟试验仿真研究[C]∥第十三届全国空气弹性学术交流会论文集, 2013:404-409.
  XU Y T, WU Z G, YANG C. Studies on simulation of the ground flutter simulation test[C]∥Proceedings of the 13th National Aero-elasticity Academic Exchange Conference, 2013: 404-409 (in Chinese).
103 徐朝阳. 大展弦比机翼颤振及状态监测研究[D]. 南京: 南京航空航天大学, 2016.
  XU C Y. Research on flutter and condition monitoring of high-aspect-ratio wing[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese).
Outlines

/