Aeronautics Computing and Simulation Technique

WiseCFD V2023: A software framework with open architecture to support verification and validation and credibility assessment of CFD software

  • Li LI ,
  • Yihua LIANG ,
  • Yong YANG ,
  • Junsheng WU
Expand
  • 1.Department of Computer Science,Northwestern Polytechnical University,Xi’an 710065,China
    2.AVIC Xi’an Aeronautics Computing Technique Research Institute,Xi’an 710068,China

Received date: 2024-03-25

  Revised date: 2024-05-06

  Accepted date: 2024-06-11

  Online published: 2024-06-14

Supported by

NNW Fundamental Research Program(NNW2019ZT7-A18);Shaanxi Key Research and Development Program(2022ZDLGY02-07)

Abstract

Verification and Validation (V&V) are the most important and fundamental measures to ensure credibility of CFD software. Since the first version of the so-called WiseCFD platform published on 2004 to support CFD V&V, many efforts have been made to establish an open framework to support credibility assessment of CFD software as well. In this paper, the WiseCFD V2023 platform is presented, which is towards establishing an open framework to support V&V and credibility assessment of CFD software on Web. The new platform is developed based on the theory of credibility evaluation index system, and with technologies for standard V&V database, as well as technologies for standard interface of CFD data and software to breakthrough the key technologies such as open integration for different CFD software, open work flow definitions for different computation jobs, open definitions of V&V and credibility assessment tasks based on different choices of evaluation indexes, open V&V database behind the platform, and automatic verification and validation. The software platform is implemented with 3-level B/S software architecture, and is established through cloud native technologies such as microservices, containerization, and container orchestration for easy creation and deployment. The feasibility and efficiency of the presented platform is demonstrated through V&V and credibility assessment of typical CFD software for engineering applications.

Cite this article

Li LI , Yihua LIANG , Yong YANG , Junsheng WU . WiseCFD V2023: A software framework with open architecture to support verification and validation and credibility assessment of CFD software[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(20) : 630440 -630440 . DOI: 10.7527/S1000-6893.2024.30440

References

1 周铸, 黄江涛, 高正红, 等. 民用飞机气动外形数值优化设计面临的挑战与展望[J]. 航空学报201940(1): 522370.
  ZHOU Z, HUANG J T, GAO Z H, et al. Challenges and prospects of numerical optimization design for large civil aircraft aerodynamic shape[J]. Acta Aeronautica et Astronautica Sinica201940(1): 522370 (in Chinese).
2 MAUERY T, ALONSO J, CARY A, et al. A guide for aircraft certification by analysis: NASA/CR-20210015404[R]. Hampton: NASA, 2021.
3 ANSYS Inc. Ansys Fluent Tourial Guide[R]. Canonsburg: ANSYS Inc, 2023.
4 RIZZI A, VOS J. Toward establishing credibility in computational fluid dynamics simulations[J]. AIAA Journal199836(5): 668-675.
5 AIAA. Guide for the verification and validation of computational fluid dynamics simulations [M]. Washington (DC): American Institute of Aeronautics and Astronautics, Inc, 1998.
6 OBERKAMPF W L, TRUCANO T G. Verification and validation in computational fluid dynamics[J]. Progress in Aerospace Sciences200238(3): 209-272.
7 HALLISSY B P, HINE D, LAIOSA J P, et al. CREATE-AV quality assurance: best practices for validating and supporting computation-based engineering software[C]∥ Proceedings of the 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014.
8 MEHTA U B, EKLUND D R, ROMERO V, et al. Simulation credibility: advances in verification, validation, and uncertainty quantification:NASA/TP-2016-219422 [R]. Moffett Field: NASA Ames Research Center, 2016.
9 陈作斌, 白文. 气动计算软件可信度研究专辑[J]. 航空计算技术200432(S1): 1-2.
  CHEN Z B, BAI W. Special edition on credibility study for numerical software of aerodynamics[J]. Aeronautical Computing200432(S1): 1-2 (in Chinese).
10 BAI W, LI L, and LIANG Y H. Recent efforts for credible CFD Simulations in China[C]∥Proceedings of 25th international congress of aeronautical science, Hamburg, ICAS, 2006.
11 邓小刚, 宗文刚, 张来平, 等. 计算流体力学中的验证与确认[J]. 力学进展200737(2): 279-288.
  DENG X G, ZONG W G, ZHANG L P, et al. Verification and validation in computational fluid dynamics[J]. Advances in Mechanics200737(2): 279-288 (in Chinese).
12 LI L, LIANG Y H, MA R. A hierarchical model for cfd validation of transporter aircraft [C]∥Proceedings of Eighth International Conference on Computational Fluid Dynamics (ICCFD8). Chengdu: China Aerodynamics Research and Development Center, 2014: ICCFD-8- 2014-0031.
13 BAI W, LI L, LI Z M, et al. CFD V & V and open benchmark database[J]. Chinese Journal of Aeronautics200619(2): 160-167.
14 LIANG Y, LI L. The WiseCFD platform for CFD credibility analysis[J]. Computational Fuild Dynamics Journal200715(4): 450-456.
15 孙久振. 基于OSGi的CFD可信度分析平台的设计与实现[D]. 西安: 西安电子科技大学, 2012.
  SUN J Z. Design and implementation of CFD credibility analysis platform based on OSGi[D]. Xi’an: Xidian University, 2012 (in Chinese).
16 何磊, 赫新, 马戎, 等. 大型CFD软件自动化测试平台的初步设计与实现[J]. 空气动力学学报201634(4): 418-425.
  HE L, HE X, MA R, et al. Preliminary design and application of CFD software automatic testing platform[J]. Acta Aerodynamica Sinica201634(4): 418-425 (in Chinese).
17 陈树生, 刘丽媛, 阎超, 等. CFD软件自动化验证确认云平台设计与实现[J]. 航空学报201738(3): 120209.
  CHEN S S, LIU L Y, YAN C, et al. Design and realization of automated testing cloud platform for CFD verification and validation[J]. Acta Aeronautica et Astronautica Sinica201738(3): 120209 (in Chinese).
18 陈坚强. 国家数值风洞(NNW)工程关键技术研究进展[J]. 中国科学: 技术科学202151(11): 1326-1347.
  CHEN J Q. Advances in the key technologies of Chinese national numerical windtunnel project[J]. Scientia Sinica (Technologica)202151(11): 1326-1347 (in Chinese).
19 陈坚强. 计算流体力学2035愿景[M]. 北京: 科学出版社, 2023.
  CHEN J Q. Computational fluid dynamics 2035 vision in China[M]. Beijing: Science Press, 2023 (in Chinese).
20 ASME. Standard for verification and validation in computational fluid dynamics and heat transfer (Reaffirmed 2016) [M]. The American Society of Mechanical Engineering, 2009.
21 HALLISSY B P, HARIHARAN N S, LAIOSA J P, et al. CREATETM-AV quality assurance: best practices for validating and supporting computation-based engineering software: AIAA-2014-0918[R]. Maryland: AIAA, 2014.
22 曹平宽, 梁益华, 齐涵君, 等. 航空CFD软件可信度评价指标体系研究进展[J]. 航空计算技术201444(5): 108-110.
  CAO P K, LIANG Y H, QI H J, et al. Research on evaluation index system of CFD software reliability[J]. Aeronautical Computing Technique201444(5): 108-110 (in Chinese).
23 李立, 曹平宽, 成水燕, 等. 基于指标体系的数值风洞软件可信度评价技术研究[J]. 航空计算技术202151(6): 55-59, 64.
  LI L, CAO P K, CHENG S Y, et al. Some investigations on building a credibility evaluation index system for numerical wind tunnel software[J]. Aeronautical Computing Technique202151(6): 55-59, 64 (in Chinese).
24 SCOTT A M, ROBERT L M. HPCMP CREATETM-AV Kestrel architecture, capabilities, and long term plan for fixed-wing aircraft simulations [C]∥ 54th AIAA Aerospace Sciences Meeting, San Diego: AIAA, 2016.
25 李立, 成水燕, 梁益华, 等. 规范CFD验证和确认算例数据入库的方法: CN115658690A[P]. 2023-01-31.
  LI L, CHENG S Y, LIANG Y H, et al. Standardize the method of CFD verification and validation example data entry: CN115658690A[P]. 2023-01-31 (in Chinese).
26 国家空间科学数据中心. 我国首个CFD验证与确认数据库依托NSSDC公开发布[EB/OL]. (2023-02-06)[2023-02-06]. .
  National Space Science Data Center. The first national CFD V&V Database was published through NSSDC [EB/OL]. (2023-02-06 )[2023-02-06]. (in Chinese).
Outlines

/