Solid Mechanics and Vehicle Conceptual Design

Dual scale ply design of composite aircraft auxiliary fuel tank

  • Chen LIU ,
  • Chen HE ,
  • Wenming GAO ,
  • Xianfeng WANG ,
  • Lin JIANG ,
  • Shuo CHENG ,
  • Yong LI ,
  • Jun XIAO
Expand
  • 1.School of Materials Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2.AVIC Hefei Jianghang Aircraft Equipment Co,Ltd,Hefei 230041
E-mail: wangxf@nuaa.edu.cn

Received date: 2024-04-17

  Revised date: 2024-05-23

  Accepted date: 2024-06-04

  Online published: 2024-06-11

Supported by

FCX-3 Composite Box Design and Development (YY05);Beijing Research Center Civil Aircraft Pre research Special Project: Research on Elastic Cutting Skin Wire Bundle Traction Forming Technology(COMAC-BYZX-2023-25);Research and Development of Short Range Automated Fiber Placement Equipment for Composite Blades of Aircraft Engines(BE2023014-4)

Abstract

Taking the aircraft composite auxiliary fuel tank as the research object, a “global-local” dual scale layup design method was developed to optimize and analyze the global and local layup of a closed ellipsoidal aircraft auxiliary fuel tank with multi-scale characteristics. Firstly, based on the characteristic structure of the fuel tank, a mechanical analysis method for the fuel tank structure was developed, and a mechanical model for carbon nanotube composite materials with lightning protection function was constructed. The load response of the skin rib layer structure under equivalent static strength and impact conditions was comprehensively analyzed, and a ply sequence optimization method was proposed for the optimal ply scheme to complete the preliminary ply optimization. Then, considering the uneven stress and interlayer/resin rich damage failure in the local variable thickness intercalation zone, a micro mechanical model of the variable thickness specimen was established using cohesive elements and delamination modeling strategy. Based on the “sub-modeling” and “shell-solid” coupling technology, a local variable thickness structural solution model for the auxiliary fuel tank was established, and a collaborative improvement of the overall structural layer design scheme for the stress in the local variable thickness zone was proposed. Finally, based on the global-local ply optimization design scheme, static, mode, and impact dynamic analyses were conducted to complete the strength validation of the global structure of the auxiliary fuel tank.

Cite this article

Chen LIU , Chen HE , Wenming GAO , Xianfeng WANG , Lin JIANG , Shuo CHENG , Yong LI , Jun XIAO . Dual scale ply design of composite aircraft auxiliary fuel tank[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(1) : 230541 -230541 . DOI: 10.7527/S1000-6893.2024.30541

References

1 赵天, 李营, 张超, 等. 高性能航空复合材料结构的关键力学问题研究进展[J]. 航空学报202243(6): 526851.
  ZHAO T, LI Y, ZHANG C, et al. Fundamental mechanical problems in high-performance aerospace composite structures:State-of-art review[J]. Acta Aeronautica et Astronautica Sinica202243(6): 526851 (in Chinese).
2 邢丽英, 李亚锋, 陈祥宝. 先进复合材料在航空装备发展中的地位与作用[J]. 复合材料学报202239(9): 8.
  XING LY, LI YF, CHEN XB. Status and role of the advanced composite materials in the development of aviation equipment[J]. Acta Materiae Compositae Sinica202239(9): 8 (in Chinese).
3 高伟, 刘存, 陈顺强. 变厚度复合材料加筋板轴压试验及分析方法[J]. 航空学报202243(11): 526764.
  GAO W, LIU C, CHEN S Q. Axial compression test and analysis method of composite stiffened plates with variable thickness[J]. Acta Aeronautica et Astronautica Sinica202243(11): 526764 (in Chinese).
4 GHADGE R, GHORPADE R, JOSHI S. Multi-disciplinary design optimization of composite structures: A review[J]. Composite Structures2022280: 114875.
5 MONTEMURRO M, PAGANI A, FIORDILINO G A, et al. A general multi-scale two-level optimisation strategy for designing composite stiffened panels[J]. Composite Structures2018201: 968-979.
6 IZZI M I, MONTEMURRO M, CATAPANO A, et al. A multi-scale two-level optimisation strategy integrating a global/local modelling approach for composite structures[J]. Composite Structures2020237: 111908.
7 RODRíGUEZ-SEGADE M, STEELANT J, HERNááNDEZ S, et al. Design optimization of multi-functional multi-lobe cryogenic fuel tank structures for hypersonic vehicles[J]. CEAS Space Journal202315(6): 813-826.
8 REDDY D R, ADITYA NAG M V, GUPTA M S N. Stress and deformation analysis of aircraft’s fuel tank under different inertia load cases in addition to a static test pressure using FEA[J]. Advanced Materials Research20151115: 527-530.
9 冯雁, 郑锡涛, 吴淑一, 等. 轻型复合材料机翼铺层优化设计与分析[J]. 航空学报201536(6): 1858-1866.
  FENG Y, ZHENG X T, WU S Y, et al. Layup optimization design and analysis of super lightweight composite wing[J]. Acta Aeronautica et Astronautica Sinica201536(6): 1858-1866 (in Chinese).
10 王轩, 许诺, 周春苹, 等. 考虑就位效应的复合材料层合板自适应遗传算法铺层优化[J]. 复合材料科学与工程2020(12): 15-20.
  WANG X, XU N, ZHOU C P, et al. The optimization of composite laminates considering effect by adaptive genetic algorithm[J]. Composites Science and Engineering2020(12): 15-20 (in Chinese).
11 沈思源. 超轻复合材料机翼模型结构优化设计[D]. 大连: 大连理工大学, 2014.
  SHEN S Y. Structural optimization design of ultra-light composite wing model[D]. Dalian: Dalian University of Technology, 2014 (in Chinese).
12 耿发贵, 李强, 宋薛思, 等. 基于冲击损伤的复合材料气瓶铺层顺序优化设计[J]. 复合材料学报202239(2): 11.
  GENG F G, LI Q, SONG X S,et al. Optimal design of laying sequence of composite gas cylinders based on impact damage[J]. Acta Materiae Compositae Sinica202239(2): 11 (in Chinese).
13 潘杰, 原崇新, 李志远, 等. 考虑可制造性的变刚度复合材料加筋壁板的优化设计[J]. 航空科学技术202334(3): 64-70.
  PAN J, YUAN C X, LI Z Y, et al. Optimization design of variable stiffness stiffened composites considering manufacturability[J]. Aeronautical Science & Technology202334(3): 64-70 (in Chinese).
14 WEISS A, TRABELSI W, MICHEL L, et al. Influence of ply-drop location on the fatigue behaviour of tapered composites laminates[J]. Procedia Engineering20102(1): 1105-1114.
15 DHURVEY P, MITTAL N D. Review on various studies of composite laminates with ply drop-off[J]. ARPN Journal of Engineering and Applied Sciences20138(8): 595-605.
16 THAWRE M M, VERMA K K, JAGANNATHAN N, et al. Effect of ply-drop on fatigue life of a carbon fiber composite under a fighter aircraft spectrum load sequence[J]. Composites Part B: Engineering201686: 120-125.
17 PENG X, WANG M B, YI B, et al. Optimization design of stacking sequence and material distribution for variable thickness hybrid composite structure based on improved stacking sequence table[J]. Composite Structures2023307: 116641.
18 张振明. 变厚度复合材料汽车防撞梁优化设计研究[D]. 长沙: 湖南大学, 2014.
  ZHANG Z M. Research on optimal design of vehicle collision avoidance beam with variable thickness composite material[D].Changsha: Hunan University, 2014 (in Chinese).
19 王振世. 变厚度复合材料层合板铺层递减设计[D]. 南京: 南京航空航天大学, 2009.
  WANG Z S. Decreasing ply design of composite laminates with variable thickness[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese).
20 杨力, 马斌, 王康, 等. 横向载荷下复合材料层合板插层补强设计[J]. 舰船科学技术201840(5): 31-40.
  YANG L, MA B, WANG K, et al. Reinforcement design of composite laminated plates in transverse load[J]. Ship Science and Technology201840(5): 31-40 (in Chinese).
21 杜晨, 彭雄奇. 变厚度连续纤维增强复合材料铺层设计优化方法[J]. 应用数学和力学202243(12): 1313-1323.
  DU C, PENG X Q. Lamination design optimization for continuous fiber reinforced composites of variable thicknesses[J]. Applied Mathematics and Mechanics202243(12): 1313-1323 (in Chinese).
22 张伟, 甘健, 王志瑾. 多工况下复合材料层合板开口补强优化设计[J]. 航空工程进展20134(2): 193-198.
  ZHANG W, GAN J, WANG Z J. Optimization of reinforcing structure for composite laminates with cutout subject to different load cases[J]. Advances in Aeronautical Science and Engineering20134(2): 193-198 (in Chinese).
23 朱永久. 某型贮箱晃动分析和防晃结构设计优化[D]. 南京: 南京航空航天大学, 2021.
  ZHU Y J. Analysis of shake in a certain type of storage tank and optimization of anti shake structure design[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese).
24 ZHAO Z X, HONG Y, GONG Z X, et al. Numerical analysis of cavity deformation of oblique water entry using a multi-resolution two-phase SPH method[J]. Ocean Engineering2023269: 113456.
25 HOWE D. Aircraft loading and structural layout[M]. London: Professional Engineering Pub., 2004.
26 中国人民解放军总装备部. 军用装备实验室环境试验方法-冲击试验: [S]. 北京: 中国人民解放军总装备部, 2009.
  General Equipment Department of the People's Liberation Army of China. Environmental testing methods for military equipment laboratories-Impact testing:GJB 150.18A [S] Beijing: General Equipment Department of the People’s Liberation Army of China, 2009 (in Chinese).
27 张玉杰, 黄超广, 李斌. 飞机冲击载荷等效静载的确定方法研究[J]. 航空工程进展202314(3): 157-163, 177.
  ZHANG Y J, HUANG C G, LI B. A method to determine the equivalent static load of aircraft impact load[J]. Advances in Aeronautical Science and Engineering202314(3): 157-163, 177 (in Chinese).
28 ASTM. Standard test method for flexural properties of polymer matrix composite material: D7264/D7264M-15 [S]. West Conshohocken: ASTM International, 2015.
Outlines

/