ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Reconfigurability and autonomous reconfiguration methods of spacecraft
Received date: 2023-04-11
Revised date: 2023-05-05
Accepted date: 2023-06-21
Online published: 2023-07-07
Supported by
National Natural Science Foundation of China(U22B6001);Young Elite Scientists Sponsorship Program by CAST(2021QNRC001);China Postdoctoral Science Foundation(2022M713005)
In response to the urgent need for safe and reliable autonomous operation of multiple types of spacecraft, such as rockets, missiles, and satellites, in-depth research has been conducted on the reconfigurability and autonomous reconfiguration methods of spacecraft, aiming to improve the system reconfiguration capability of spacecraft under faults. Firstly, considering various practical disturbance factors such as aerodynamic torque, geomagnetic torque, gravity gradient torque, and process noise, a reconfigurability evaluation method for disturbed systems is proposed, which realizes the determination and quantification of reconfiguration capability. Then, a passive/active combined autonomous reconfiguration method is proposed, which balances the implementation effectiveness and difficulty of the reconfiguration scheme. When designing specific reconfiguration algorithms, an integrated design method of normal and fault modes is proposed, which balances the nominal performance and reconfigurability of the system and reduces the over-conservativeness of the reconfiguration scheme. Finally, the effectiveness of the proposed methods is verified through a simulation example.
Yuanyuan TU , Dayi WANG , Xiangyan ZHANG , Jiaxing LI , Xiaofeng HUANG . Reconfigurability and autonomous reconfiguration methods of spacecraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023 , 44(23) : 628855 -628855 . DOI: 10.7527/S1000-6893.2023.28855
1 | 王大轶, 刘成瑞, 刘文静,等. 航天器控制系统自主诊断重构技术: 系统可诊断性与可重构性的评价和设计[M]. 北京: 中国宇航出版社, 2019. |
WANG D Y, LIU C R, LIU W J,et al. Autonomous diagnosis and reconfiguration technology of spacecraft control system: Evaluation and design of system diagnosability and reconfiguration[M]. Beijing: China Astronautic Publishing House, 2019 (in Chinese). | |
2 | 姜斌, 张柯, 杨浩, 等. 卫星姿态控制系统容错控制综述[J]. 航空学报, 2021, 42(11): 524662. |
JIANG B, ZHANG K, YANG H, et al. Fault-tolerant control of satellite attitude control systems: Review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524662 (in Chinese). | |
3 | WU N E, ZHOU K M, SALOMON G. Control reconfigurability of linear time-invariant systems[J]. Automatica, 2000, 36(11): 1767-1771. |
4 | REN W J, YANG H, JIANG B. Fault recoverability analysis of nonlinear systems: A piecewise affine system approach[J]. International Journal of Control, Automation and Systems, 2017, 15(2): 547-556. |
5 | SHAKER H R. Control reconfigurability of bilinear systems[J]. Journal of Mechanical Science and Technology, 2013, 27(4): 1117-1123. |
6 | YANG H, JIANG B, STAROSWIECKI M, et al. Fault recoverability and fault tolerant control for a class of interconnected nonlinear systems[J]. Automatica, 2015, 54: 49-55. |
7 | STAROSWIECKI M. On reconfigurability with respect to actuator failures[J]. IFAC Proceedings Volumes, 2002, 35(1): 257-262. |
8 | HUANG C K, YANG H, REN W J, et al. Fault recoverability analysis of interconnected systems[J]. IET Control Theory & Applications, 2019, 13(4): 554-561. |
9 | REN W J, YANG H, JIANG B. Fault recoverability analysis of nonlinear systems: A piecewise affine system approach[J]. International Journal of Control, Automation and Systems, 2017, 15(2): 547-556. |
10 | WANG D Y, LIU C R. Reconfigurability analysis method for spacecraft autonomous control[J]. Mathematical Problems in Engineering, 2014, 2014: 724235. |
11 | YANG H, ZHANG C C, AN Z X, et al. Exponential small-gain theorem and fault tolerant safe control of interconnected nonlinear systems[J]. Automatica, 2020, 115: 108866. |
12 | ZHANG C C, YANG H, JIANG B. Fault estimation and accommodation of fractional-order nonlinear, switched, and interconnected systems[J]. IEEE Transactions on Cybernetics, 2022, 52(3): 1443-1453. |
13 | TU Y Y, WANG D Y, LI W B, et al. Optimisation of controller reconfiguration instant for spacecraft control systems with additive actuator faults[J]. International Journal of Systems Science, 2021, 52(14): 3076-3090. |
14 | HUANG J Z, WU N E. Fault-tolerant placement of phasor measurement units based on control reconfigurability[J]. Control Engineering Practice, 2013, 21(1): 1-11. |
15 | HUANG J Z, WU N E. Fault-tolerant sensor placement based on control reconfigurability[J]. IFAC Proceedings Volumes, 2011, 44(1): 14814-14819. |
16 | SANJUAN A, NEJJARI F, SARRATE R. Reconfigurability analysis of multirotor UAVs under actuator faults[C]∥ 2019 4th Conference on Control and Fault Tolerant Systems. Piscataway: IEEE Press, 2019: 26-31. |
17 | PENG Y, YANG H, JIANG B. Probabilistic fault recoverability analysis of flight control process[J]. Chinese Journal of Aeronautics, 2021, 34(2): 529-538. |
18 | MENG Q K, YANG H, JIANG B. Attitude control reconfigurability analysis of 4-CMGs pyramid configuration spacecraft[C]∥ 2019 12th Asian Control Conference. Piscataway: IEEE Press, 2019: 1478-1482. |
19 | YANG H, MENG Q K, JIANG B. Controllability of spacecraft attitude and its application in reconfigurability analysis[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36(2): 189-196. |
20 | BRAKSMAYER M, MIRKIN L. Discrete-time H2 optimal control under intermittent and lossy communications[J]. Automatica, 2019, 103: 180-188. |
21 | TU Y Y, WANG D Y, DING S X, et al. A reconfiguration-based fault-tolerant control method for nonlinear uncertain systems[J]. IEEE Transactions on Automatic Control, 2022, 67(11): 6060-6067. |
22 | 吴敏, 桂卫华, 何勇. 现代鲁棒控制[M]. 2版. 长沙: 中南大学出版社, 2006. |
WU M, GUI W H, HE Y. Advanced robust control[M]. 2nd ed. Changsha: Central South University Press, 2006 (in Chinese). | |
23 | ZHOU K M, DOYLE J C, GLOVER K. Robust and optimal control[M]. Englewood Cliffs: Prentice Hall, 1996. |
24 | LIANG Y W, LIAW D C, LEE T C. Reliable control of nonlinear systems[J]. IEEE Transactions on Automatic Control, 2000, 45(4): 706-710. |
/
〈 |
|
〉 |