Fluid Mechanics and Flight Mechanics

Control strategy for quad-tiltrotor aircraft

  • Pan ZHOU ,
  • Renliang CHEN ,
  • Ningmeng YANG ,
  • Bowen NIE ,
  • Guoqiang LI
Expand
  • 1.State Key Laboratory of Aerodynamics,China Aerodynamics Research and Development Center,Mianyang 621000,China
    2.National Key Laboratory of Helicopter Aeromechanics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
E-mail: cardc1s@163.com

Received date: 2024-01-16

  Revised date: 2024-03-12

  Accepted date: 2024-05-10

  Online published: 2024-06-03

Supported by

National Level Project

Abstract

The multi-rotors and multi-wings configuration of the Quad-TiltRotor (QTR) leads to complicated aerodynamic interference between each component, while occupying redundant control inputs. A model considering aerodynamic rotor-rotor and rotor-wing interference is developed, which is applicable to multiple flight modes of the quad-tiltrotor aircraft. A nonlinear flight dynamics model with a high degree of confidence across the flight range is established. A control strategy configuration method is proposed by introducing the control weight coefficient to solve the redundant control problem. Then, the sensitivity to flight dynamics characteristics of each compound control is analyzed. The simulation results show that the required rotor power and pitch attitude will reduce as the combined longitudinal cyclic pitch increases. A suitable weight coefficient of combined lateral cyclic pitch is necessary to balance the too small control derivative and too large heading coupling derivative. The heading control derivative can increase by using the weight coefficient of left-right rotors collective differential in the fixed-wing mode, but unnecessary lateral coupling will be brought in. The weight of the cross rotor collective differential should be reduced in the helicopter mode and increase in the conversion mode. The increase of the weight coefficient of front-rear rotors lateral cyclic differential can decrease dramatically the lateral coupling caused by heading control.

Cite this article

Pan ZHOU , Renliang CHEN , Ningmeng YANG , Bowen NIE , Guoqiang LI . Control strategy for quad-tiltrotor aircraft[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(22) : 130165 -130165 . DOI: 10.7527/S1000-6893.2024.30165

References

1 MARTIN D, DEMO J, DANIEL C. The history of the XV-15 tilt rotor research aircraft: From concept to flight: NASA SP-2000-4517[R]. Washington, D. C.: NASA, 2000.
2 BRAGANCA E. The V-22 osprey: From troubled past to viable and flexible option[J]. Joint Force Quarterly201266: 80-84.
3 KING D . W. A system engineering approach to carefree maneuvering in the BA609[C]∥ American Helicopter Society 61st Annual Forum. 2005.
4 SNYDER D E. The quad tiltrotor: Its beginning and evolution[C]∥ International Powered Lift Conference. 2000.
5 俞志明, 陈仁良, 孔卫红. 倾转四旋翼飞行器倾转过渡走廊分析方法[J]. 北京航空航天大学学报202046(11): 2106-2113.
  YU Z M, CHEN R L, KONG W H. Analysis method for conversion corridor of quad tilt rotor aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics202046(11): 2106-2113 (in Chinese).
6 周攀, 陈仁良, 俞志明. 倾转四旋翼飞行器直升机模式操纵策略研究[J]. 航空动力学报202136(10): 2036-2051.
  ZHOU P, CHEN R L, YU Z M. Investigation of control strategy for quad-tilt-rotor aircraft in helicopter mode[J]. Journal of Aerospace Power202136(10): 2036-2051 (in Chinese).
7 WANG Z G, ZU R, DUAN D Y, et al. Tuning of ADRC for QTR in transition process based on NBPO hybrid algorithm[J]. IEEE Access20197: 177219-177240.
8 ZHOU P, CHEN R L, YUAN Y, et al. Aerodynamic interference on trim characteristics of quad-tiltrotor aircraft[J]. Aerospace20229(5): 262.
9 严旭飞, 陈仁良. 倾转旋翼机动态倾转过渡过程的操纵策略优化[J]. 航空学报201738(7):520865.
  YAN X F, CHEN R L. Control strategy optimization of dynamic conversion procedure of tilt-rotor aircraft[J]. Acta Aeronautica et Astronautic Sinica201738(7): 520865 (in Chinese).
10 HARENDRA P B, JOGLEKAR M J, GAFFEY T M, et al. A mathematical model for real time flight simulation of the Bell model 301 tilt rotor research aircraft: NASA-CR-114614[R]. Washington, D.C.: NASA, 1973.
11 FERGUSON S W. A mathematical model for real time flight simulation of a generic tilt-rotor aircraft: NASA CR-166536[R]. Washington, D. C.: NASA, 1988.
12 蒋海辉. 倾转四旋翼飞行器操纵策略研究[D]. 南京: 南京航空航天大学, 2019: 25-50.
  JIANG H H. Research on control strategy of tilting quadrotor aircraft[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2019: 25-50 (in Chinese).
13 余天乐. 倾转四旋翼飞行器过渡态操纵策略研究[D]. 南京: 南京航空航天大学, 2022: 37-51.
  YU T L. Study on transition state control strategy of tilting quadrotor aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022: 37-51 (in Chinese).
14 WOOD T L, COLLINS B, ISAAC M. Quad tiltrotor - A solution for intra-theater lift[C]∥American Helicopter Society 58th Annual Forum. 20022: 1754-1767.
15 RADHAKRISHNAN A, SCHMITZ F. Quad tilt rotor aerodynamics in ground effect[C]∥ 23rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2005.
16 JIM C N, GLENN L. Application of computational fluid dynamics during the conceptual design of the Bell JHL quad tiltrotor[C]∥American Helicopter Society 63rd Annual Forum. 2007.
17 SHENG C H, NARRAMORE J C. Computational simulation and analysis of Bell boeing quad tiltrotor aero interaction[J]. Journal of the American Helicopter Society200954(4): 042002.
18 李鹏, 招启军. 悬停状态倾转旋翼/机翼干扰流场及气动力的CFD计算[J]. 航空学报201435(2): 361-371.
  LI P, ZHAO Q J. CFD calculations on the interaction flowfield and aerodynamic force of tiltrotor/wing in hover[J]. Acta Aeronautica et Astronautica Sinica201435(2): 361-371 (in Chinese).
19 刘佳豪, 李高华, 王福新. 倾转过渡状态旋翼-机翼气动干扰特性[J]. 航空学报202243(12): 126097.
  LIU J H, LI G H, WANG F X. Rotor-wing aerodynamic interference characteristics in conversion mode[J]. Acta Aeronautica et Astronautica Sinica202243(12): 126097 (in Chinese).
20 PITT D, PETERS D. Theoretical prediction of dynamic inflow derivatives[J]. Vertica19815(1): 21-34.
21 PETER D T, BRUCE E T, et al. A mathematical model of a single main rotor helicopter for piloted simulation: NASA Technical Memorandum 84281[R]. Washington, D.C.: NASA, 1982.
22 LANDGREBE A J. An analytical and experimental investigation of helicopter rotor hover performance and wake geometry characteristics: USAARMDL Technicla Report 71-74[R]. East Hardford: United Aircraft Research Labs, 1971.
23 CARLSON E B, ZHAO Y J. Optimal short takeoff of tiltrotor aircraft in one engine failure[J]. Journal of Aircraft200239(2): 280-289.
24 KLEIN P D, NICKS C. Flight director and approach profile development for civil tiltrotor terminal area operations[C]∥ American Helicopter Society 54th Annual Forum. 1998: 1120-1133.
Outlines

/