Reviews

Research progress on simulation methods of drop diameter distribution in supercooled large drop icing conditions

  • Liping WANG ,
  • Fuxin WANG ,
  • Hong LIU
Expand
  • School of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China

Received date: 2024-04-22

  Revised date: 2024-05-09

  Accepted date: 2024-05-27

  Online published: 2024-05-29

Supported by

National Natural Science Foundation of China(52202447);Shanghai Sailing Program(22YF1419000)

Abstract

Since the end of the last century, the phenomenon of aircraft icing in Supercooled Large Drop (SLD) icing conditions (14 CFR Part 25 Appendix O) have attracted much attention. Its impact on flight safety is worse than that under atmospheric icing conditions (14 CFR Part 25 Appendix C). The successive promulgation of Amendment of FAR 25-140 and EASA CS-25 16 indicates that the implementation of SLD icing airworthiness compliance verification is a mandatory condition for China’s large civil aircraft to obtain European and American airworthiness certificates. The simulation of SLD icing conditions is a pre-requisite for the ground SLD icing test, and is very important for the design of SLD anti-icing system and the verification of icing test. In this paper, the typical characteristics of the drop diameter distribution simulation under the icing conditions of SLD, namely, large drop diameter span with bimodal distribution and low Liquid Water Content (LWC), are analyzed. The research and development of the simulation methods of drop diameter distribution under SLD icing conditions in the world’s major icing research institutions in the past 30 years are reviewed. It is found that the technology for simulating the drop diameter distribution of Freezing Drizzle (FZDZ) mainly goes through four stages: increasing the Median Volume Diameter (MVD) of the spray, alternately producing MVD clouds with different sizes, regulating water pressure and simultaneously producing clouds with different MVD, and using two sets of independently controllable MVD cloud generation systems. Simulation of the drop diameter distribution for Freezing Rain (FZRA) is even more challenging and is still in the initial stages of development. The main achievements are introduced and the problems are discussed. Finally, the research direction, key technical problems and solutions of drop diameter distribution simulation in SLD icing conditions are discussed.

Cite this article

Liping WANG , Fuxin WANG , Hong LIU . Research progress on simulation methods of drop diameter distribution in supercooled large drop icing conditions[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(S1) : 730570 -730570 . DOI: 10.7527/S1000-6893.2024.30570

References

1 SASSEN K, LIOU K N, KINNE S, et al. Highly supercooled cirrus cloud water: Confirmation and climatic implications[J]. Science1985227(4685): 411-413.
2 ROSENFELD D, WOODLEY W L. Deep convective clouds with sustained supercooled liquid water down to-37.5?℃[J]. Nature2000405(6785): 440-442.
3 Civil Aviation Authority.Aircraft icing handbook [M]. Version 1 ed. Lower Hutt: CAA, 2000.
4 魏岳江. 空难事故原因透视: 五花八门的罪魁祸首[J]. 航空世界2014(9): 66-71.
  WEI Y J. A perspective on the causes of air accidents-Various culprits [J]. Aviation World2014(9): 66-71 (in Chinese).
5 中国民用航空华东地区管理局航空安全委员会. 2021年3月1日北大荒通航BE300江西吉安坠机事故调查报告: 20210301TFSQ01[R]: 北京: 中国民用航空局, 2021.
  Aviation Safety Committee of East China Regional Administration of Civil Aviation of China. Investigation report of BEDAHUANG BE300 crash accident in Ji’an, Jiangxi Province on March 1, 2021: 20210301TFSQ01[R]:Beijing: Civil Aviation Administration of China, 2021 (in Chinese).
6 MAZON J, ROJAS J I, LOZANO M, et al. Influence of meteorological phenomena on worldwide aircraft accidents, 1967-2010[J]. Meteorological Applications201825(2): 236-245.
7 张恒, 李杰, 赵宾宾. 结冰翼型前缘下垂变弯度容冰特性改善机制[J]. 航空学报202344(1): 627114.
  ZHANG H, LI J, ZHAO B B. Improvement mechanism of ice-tolerance capacity for iced airfoil with variable camber of drooping leading edge[J]. Acta Aeronautica et Astronautica Sinica202344(1): 627114 (in Chinese).
8 桂业伟, 周志宏, 李颖晖, 等. 关于飞机结冰的多重安全边界问题[J]. 航空学报201738(2): 520734.
  GUI Y W, ZHOU Z H, LI Y H, et al. Multiple safety boundaries protection on aircraft icing[J]. Acta Aeronautica et Astronautica Sinica201738(2): 520734 (in Chinese).
9 朱春玲, 朱程香. 飞机结冰及其防护[M]. 北京: 科学出版社, 2016.
  ZHU C L, ZHU C X. Aircraft icing and its protection[M]. Beijing: Science Press, 2016 (in Chinese).
10 HE Q, LI K S, XU Z H, et al. Research progress on construction strategy and technical evaluation of aircraft icing accretion protection system[J]. Chinese Journal of Aeronautics202336(10): 1-23.
11 BERNSTEIN B, CAMPO W, ALGODAL L, et al. The embraer-170 and-190 natural icing flight campaigns: Keys to success[C]∥Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
12 丁军亮, 赵利利, 杨涛, 等. 自然结冰飞行试验技术综述[J]. 航空学报202344(17): 028270.
  DING J L, ZHAO L L, YANG T, et al. Flight test technology of natural icing[J]. Acta Aeronautica et Astronautica Sinica202344(17): 028270 (in Chinese).
13 高郭池, 张波, 全敬泽, 等. 正常类飞机自然结冰试飞适航审定技术[J]. 航空学报202445(1): 128531.
  GAO G C, ZHANG B, QUAN J Z, et al. Airworthiness certification technology of normal aircraft natural icing flight test[J]. Acta Aeronautica et Astronautica Sinica202445(1): 128531 (in Chinese).
14 Federal Aviation Administration. Airworthiness standards: Transport category airplanes, Appendix C [S]. Washington, D.C.: FAA, 1974.
15 中国民用航空局政策法规司. 运输类飞机适航标准: CCAR-25-R4 [S]. 北京: 中国民用航空局, 2016.
  Department of Policy and Regulation, Civil Aviation Administration of China. Airworthiness standard for transport aircraft: CCAR-25-R4 [S]. Beijing: Civil Aviation Administration of China, 2016 (in Chinese).
16 Federal Aviation Administration. 79 FR 65507 - Airplane and engine certification requirements in supercooled large drop, mixed phase, and ice crystal icing conditions [S]. Washington, D.C.: FAA, 2014.
17 European Aviation Safety Agency. Easy access rules for large aeroplanes (CS 25) (Amendment 16) [S]. Keulen :European Aviation Safety Agency, 2015.
18 陈勇, 孔维梁, 刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战[J]. 航空学报202344(1): 626973.
  CHEN Y, KONG W L, LIU H. Challenge of aircraft design under operational conditions of supercooled large water droplet icing[J]. Acta Aeronautica et Astronautica Sinica202344(1): 626973 (in Chinese).
19 战培国. 美国NASA结冰试验设备体系综述[J]. 航空科学技术202132(5): 1-6.
  ZHAN P G. Review on the system of icing facilities in NASA[J]. Aeronautical Science & Technology202132(5): 1-6 (in Chinese).
20 VECCHIONE L, DE MATTEIS P. An overview of the CIRA icing wind tunnel[C]∥Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
21 倪章松, 刘森云, 王桥, 等. 3m×2m结冰风洞试验技术研究进展[J]. 实验流体力学201933(6): 46-53.
  NI Z S, LIU S Y, WANG Q, et al. Research progress of test technologies for 3m × 2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics201933(6): 46-53 (in Chinese).
22 符澄, 宋文萍, 彭强, 等. 结冰风洞过冷大水滴结冰条件模拟能力综述[J]. 实验流体力学201731(4): 1-7.
  FU C, SONG W P, PENG Q, et al. An overview of supercooled large droplets icing condition simulation capability in icing wind tunnels[J]. Journal of Experiments in Fluid Mechanics201731(4): 1-7 (in Chinese).
23 National Transportation Safety Board. Aircraft accident report: In-flight icing encounter and loss of control, simmons airlines: NTSB/AAR-96/02[R]. Washington, D.C.: National Transportation Safety Board, 1996.
24 Federal Aviation Administration. FAA inflight aircraft icing plan[R]. Washington, D.C.: FAA, 1997.
25 MILLER D. NASA/FAA/NCAR supercooled large droplet icing flight research: Summary of winter 96-97 flight operations[R]. Washington, D.C.: NASA, 1998.
26 ISAAC G, COBER S, KOROLEV A, et al. Canadian freezing drizzle experiment[C]∥Proceedings of the 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999.
27 CURRY J A, HOBBS P V, KING M D, et al. FIRE Arctic clouds experiment[J]. Bulletin of the American Meteorological Society200081(1): 5-29.
28 ISAAC G A, COBER S G, STRAPP J W, et al. Recent Canadian research on aircraft in-flight icing [J]. Canadian Aeronautics & Space Journal200144(44): 213-222.
29 ISAAC G, COBER S, STRAPP J, et al. Preliminary results from the Alliance Icing Research Study (AIRS)[C]∥Proceedings of the 39th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2001.
30 HAUF T, SCHR?DER F. Aircraft icing research flights in embedded convection[J]. Meteorology and Atmospheric Physics200691(1): 247-265.
31 COBER S, BERNSTEIN B, JECK R, et al. Data and analysis for the development of an engineering standard for supercooled large drop conditions: DOT/FAA/AR-09/10 [R]: Washington, D.C.: FAA, 2009.
32 COBER S G, ISAAC G A. Characterization of aircraft icing environments with supercooled large drops for application to commercial aircraft certification[J]. Journal of Applied Meteorology and Climatology201251(2): 265-284.
33 COBER S G, ISAAC G A, STRAPP J W, et al. Analysis of aircraft icing environments associated with supercooled drizzle droplets[C]∥Proceedings of the FAA International Conference on Aircraft Inflight Icing. Washington, D.C.: FAA, 1996.
34 HUFFMAN G J, NORMAN G A. The supercooled warm rain process and the specification of freezing precipitation[J]. Monthly Weather Review1988116(11): 2172.
35 刘朝茹, 韩永翔, 王瑾, 等. 我国冻雨统计及发生机制研究[J]. 灾害学201530(3): 219-222, 234.
  LIU C R, HAN Y X, WANG J, et al. Studies on statistics and formation mechanism of freezing rain[J]. Journal of Catastrophology201530(3): 219-222, 234 (in Chinese).
36 李杰, 郭学良, 周晓宁, 等. 2011—2013年中国冻雨、冻毛毛雨和冻雾的特征分析[J]. 大气科学201539(5): 1038-1048.
  LI J, GUO X L, ZHOU X N, et al. Characteristics of freezing rain, freezing drizzle, and freezing fog in China from 2011 to 2013[J]. Chinese Journal of Atmospheric Sciences201539(5): 1038-1048 (in Chinese).
37 朱东宇, 裴如男, 杨秋明, 等. FL-61结冰风洞热气防冰系统试验方法研究[J]. 气动研究与试验20231(5): 107-112.
  ZHU D Y, PEI R N, YANG Q M, et al. Experimental research on a hot air anti-icing system in FL-61 icing wind tunnel[J]. Aerodynamic Research & Experiment20231(5): 107-112 (in Chinese).
38 袁烨. 关于过冷大水滴的适航规章新趋势和影响解析[J]. 科技创新与应用2015(26): 72.
  YUAN Y. Analysis of new trend and influence of airworthiness regulations on supercooled large water droplets [J]. Technology Innovation and Application2015(26): 72 (in Chinese).
39 李艳. 过冷大水滴规章对民机适航取证的影响[J]. 中国科技信息2017(10): 29-30.
  LI Y. Influence of supercooled large water drop regulations on civil aircraft airworthiness certification [J]. China Science and Technology Information2017(10): 29-30 (in Chinese).
40 丁媛媛. 运输类飞机结冰适航审定方法及SLD关键技术研究[D]. 南京: 南京航空航天大学, 2018.
  DING Y Y. Research on icing airworthiness certification methods and SLD key technology for transport category airplanes[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese).
41 IDE R F, OLDENBURG J R. Icing cloud calibration of the NASA Glenn Icing Research Tunnel[M]. Washington, D.C.: NASA, 2001.
42 BOND T, POTAPCZUK M, MILLER D. Overview of SLD engineering tool development[C]∥Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
43 IDE R F, SHELDON, DAVID W. 2006 icing cloud calibration of the NASA Glenn icing research tunnel: NASA/TM-2008-215177[R]: Washington,D.C.:NASA, 2008.
44 VAN ZANTE J, IDE R, STEEN L C. NASA Glenn icing research tunnel: 2012 cloud calibration procedure and results[C]∥Proceedings of the 4th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2012.
45 POTAPCZUK M, MILLER D, IDE R, et al. Simulation of a Bi-modal large droplet icing cloud in the NASA icing research tunnel[C]∥Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2005.
46 POTAPCZUK M, MILLER D. Numerical simulation of ice shapes from a bimodal large droplet icing cloud[C]∥Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
47 VAN ZANTE J F, IDE R F, STEEN L E, et al. NASA Glenn icing research tunnel: 2014 cloud calibration procedure and results: NASA/TM-2014-218392 [R]: Washington, D.C.: NASA, 2014.
48 STEEN L E, IDE R, ZANTE J V, et al. NASA Glenn icing research tunnel: 2014 and 2015 cloud calibration procedures and results: NASA/TM-2015-218758 [R]. Washington, D.C.: NASA, 2015.
49 KING-STEEN L C, IDE R F. Creating a bimodal drop-size distribution in the NASA Glenn icing research tunnel[C]∥Proceedings of the 9th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2017.
50 KING-STEEN L E, TIMKO E N, IDE R F, et al. NASA Glenn icing research tunnel: 2018 change in drop-sizing equations due to change in cloud droplet probe sample area: NASA/TM—2019-219990 [R]: Washington, D.C.: NASA, 2019.
51 TIMKO E N, KING-STEEN L E, ZANTE J F V, et al. NASA Glenn icing research tunnel: 2019 cloud calibration procedure and results: NASA/TM-20205009045 [R]: Washington, D.C.: NASA, 2021.
52 李斯, 束珺, 张志强, 等. 冰风洞过冷大水滴云雾水滴质量分布模拟[J]. 南京航空航天大学学报202355(1): 146-153.
  LI S, SHU J, ZHANG Z Q, et al. Study on simulation for droplet mass distribution of supercooled large droplet cloud in icing wind tunnel[J]. Journal of Nanjing University of Aeronautics & Astronautics202355(1): 146-153 (in Chinese).
53 束珺, 徐东光, 韩志熔, 等. 结冰风洞过冷大水滴试验中混合翼设计[J]. 航空学报202344(1): 627182.
  SHU J, XU D G, HAN Z R, et al. Hybrid wing design of icing wind tunnel supercooled large droplet icing test[J]. Acta Aeronautica et Astronautica Sinica202344(1): 627182 (in Chinese).
54 ESPOSITO B M. Validation and calibration of CIRA-SBS upgrade to SLD cloud simulation: Test plan: ACAD-0032 / CIRA-CF-08-0648 [R]. Capua: Centro Italiano Ricerche Aerospazial, 2008.
55 ESPOSITO B. Application of optical methods for icing wind tunnel cloud simulation extension to supercooled large droplets[C]∥23rd Annual Conference on Liquid Atomization and Spray Systems, 2011.
56 ORCHARD D M, CLARK C, OLESKIW M. Development of a supercooled large droplet environment within the NRC altitude icing wind tunnel[C]∥SAE Technical Paper Series. Warrendale: SAE International, 2011.
57 ROCCO E T, HAN Y Q, KREEGER R, et al. Super-cooled large droplet experimental reproduction, ice shape modeling, and scaling method assessment[J]. AIAA Journal202159(4): 1277-1295.
58 FERSCHITZ H, WANNEMACHER M, BUCEK O, et al. Development of SLD capabilities in the RTA icing wind tunnel[J]. SAE International Journal of Aerospace201710(1): 12-21.
59 BREITFU? W, WANNEMACHER M, KN?BL F, et al. Aerodynamic comparison of freezing rain and freezing drizzle conditions at the RTA icing wind tunnel[J]. SAE International Journal of Advances and Current Practices in Mobility20192(1): 245-255.
60 唐虎, 常士楠, 成竹, 等. 内混式空气助力喷嘴喷雾水滴尺寸分布建模[J]. 航空学报201637(5): 1473-1483.
  TANG H, CHANG S N, CHENG Z, et al. Modeling droplet size distribution of spray for an internal-mixing air-assisted nozzle[J]. Acta Aeronautica et Astronautica Sinica201637(5): 1473-1483 (in Chinese).
61 符澄, 徐兵兵, 彭强, 等. 结冰风洞中SLD模拟方法及其实验验证研究[C]∥中国力学大会论文集(CCTAM 2019), 2019.
  FU C, XU B B, PENG Q, et al. The SLD simulation method and experiment study of icing wind tunnel[C]∥ The Chinese Congress of Theoretical and Applied Mechanics (CCTAM 2019). 2019 (in Chinese).
62 刘森云, 王桥, 易贤, 等. 3m×2m结冰风洞试验技术新进展(2020—2022年)[J]. 空气动力学学报202341(1): 57-65.
  LIU S Y, WANG Q, YI X, et al. New progress of 3 m × 2 m icing wind tunnel test technology from 2020 to 2022[J]. Acta Aerodynamica Sinica202341(1): 57-65 (in Chinese).
63 BERTHOUMIEU P, DéJEAN B, BODOC V, et al. ONERA research icing wind tunnel[C]∥Proceedings of the AIAA Aviation 2022 Forum. Reston: AIAA, 2022.
64 RAIL TEC ARSENAL FAHRZEUGVERSUCHSANLA-GE GMBH. Device for producing water drops of a determined size, WO 2018/10719 A1[P/OL]. 2018-6-11 (in German).
65 WANG L P, KONG W L, LIU H, et al. Experimental study on a solenoid valve-based generator for droplet generation[J]. Journal of Physics: Conference Series20191300(1): 012044.
66 WANG L P, KONG W L, BIAN P X, et al. Experimental investigation on the performances of a valve-based and on-demand droplet generator producing droplets in a wide size range[J]. AIP Advances202212(9): 095310.
67 王利平. 面向飞机结冰环境模拟的过冷大水滴可控发生原理研究[D]. 上海: 上海交通大学, 2021.
  WANG L P. The principle of controllable generation of supercooled large water droplets for simulation of aircraft icing conditions [D]. Shanghai: Shanghai Jiao Tong University, 2021 (in Chinese).
68 Ice Protection Harmonization Working Group (IPHWG). Task 2-Review national transportation safety board: Working group report on supercooled large droplet rulemaking[R]. Washington, D.C.: Federal Aviation Administration, 2016.
69 刘洪, 王福新, 王利平, 等. 过冷大水滴发生装置及方法, CN115384805A [P/OL]. 2022-11-25.
  LIU H, WANG F X, WANG L P, et al. Device and method for generating supercooled large water drop, CN115384805A [P/OL]. 2022-11-25 (in Chinese).
70 陈海, 郭向东, 赵荣, 等. 冻细雨分布匹配的量化评估方法[J]. 南京航空航天大学学报202355(2): 233-240.
  CHEN H, GUO X D, ZHAO R, et al. Quantitative evaluation method of freezing drizzle distribution matching[J]. Journal of Nanjing University of Aeronautics & Astronautics202355(2): 233-240 (in Chinese).
71 SAE. Calibration and acceptance of icing wind tunnels: SAE ARP5905[R]. Warrendale: SAE Aerospace, 2009.
72 VAN ZANTE J F, STRAPP J W, ESPOSITO B, et al. SLD instrumentation in icing wind tunnels-investigation overview[C]∥Proceedings of the AIAA Aviation 2021 Forum. Reston: AIAA, 2021.
Outlines

/