ACTA AERONAUTICAET ASTRONAUTICA SINICA >
A semantic feature matching algorithm for UAV visual pose estimation
Received date: 2024-03-18
Revised date: 2024-04-15
Accepted date: 2024-05-09
Online published: 2024-05-29
Supported by
National Natural Science Foundation of China(62206310);Youth Innovation Team of Shaanxi Universities(2023015)
The feature points extracted by traditional methods in UAV navigation are susceptible to external factors such as changes in lighting and viewing angles, and the low matching accuracy and poor robustness of the algorithm in complex environment lead to large errors in pose estimation. To address these issues, this paper proposes a semantic feature matching algorithm that integrates multiple types of information. The algorithm replaces traditional feature points with semantic feature points to enhance robustness and repeatability of point extraction. To optimize the accuracy of the description, we establish the initial representations of feature points via positional, semantic, and descriptive information. Subsequently, a graph neural network incorporating a fusion attention mechanism is used to aggregate the information from other semantic feature points, so as to create the final representation. Finally, the comprehensive matching degree of feature point pairs is calculated based on semantic and characterization information to enhance the accuracy of feature matching. Experimental results demonstrate that in UAV flight scenarios, the proposed algorithm exhibits better robustness and feature matching accuracy compared to traditional algorithms. Moreover, it shows strong robustness to changes in lighting and large viewing angles, providing more reliable and accurate landmark matching for back-end UAV visual pose estimation.
Chenhao ZHAO , Dewei WU , Jing HE , Qian WU . A semantic feature matching algorithm for UAV visual pose estimation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(2) : 330406 -330406 . DOI: 10.7527/S1000-6893.2024.30406
1 | 张闻宇, 李智, 王勇军. 基于CenSurE-star特征的无人机景象匹配算法[J]. 仪器仪表学报, 2017, 38(2): 462-470. |
ZHANG W Y, LI Z, WANG Y J. UAV scene matching algorithm based on CenSurE-star feature?[J]. Chinese Journal of Scientific Instrument, 2017, 38(2): 462-470 (in Chinese). | |
2 | 刘海桥, 刘萌, 龚子超, 等. 基于深度学习的图像匹配方法综述[J]. 航空学报, 2024, 45(3): 028796. |
LIU H Q, LIU M, GONG Z C, et al. A review of image matching methods based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 028796 (in Chinese). | |
3 | 李家松, 李明磊, 魏大洲, 等. GPS拒止条件下的景象匹配导航方法研究[J]. 电子技术应用, 2022, 48(3): 88-93. |
LI J S, LI M L, WEI D Z, et al. Research on scene matching navigation method under GPS-denied environments[J]. Application of Electronic Technique, 2022, 48(3): 88-93 (in Chinese). | |
4 | 赵春晖, 周昳慧, 林钊, 等. 无人机景象匹配视觉导航技术综述[J]. 中国科学(信息科学), 2019, 49(5): 507-519. |
ZHAO C H, ZHOU Y H, LIN Z, et al. Review of scene matching visual navigation for unmanned aerial vehicles[J]. Scientia Sinica (Informationis), 2019, 49(5): 507-519 (in Chinese). | |
5 | 范继伟, 杨小冈, 卢瑞涛, 等. 基于遥感影像的智能景像匹配适配区选择方法[J]. 中国惯性技术学报, 2023, 31(1): 14-23. |
FAN J W, YANG X G, LU R T, et al. Intelligent scene matching suitable area selection method based on remote sensing image[J]. Journal of Chinese Inertial Technology, 2023, 31(1): 14-23 (in Chinese). | |
6 | 张绍荣, 张闻宇, 李云, 等. 基于FAST角点和FREAK描述符改进的无人机景象匹配算法[J]. 电子测量与仪器学报, 2020, 34(4): 102-110. |
ZHANG S R, ZHANG W Y, LI Y, et al. Improved UAV scene matching algorithm based on FAST corner and FREAK descriptor[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(4): 102-110 (in Chinese). | |
7 | DONG J, HU M Q, LU J Z, et al. Affine template matching based on multi-scale dense structure principal direction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(6): 2125-2132. |
8 | REVAUD J, WEINZAEPFEL P, HARCHAOUI Z, et al. DeepMatching: hierarchical deformable dense matching[J]. International Journal of Computer Vision, 2016, 120(3): 300-323. |
9 | KORMAN S, REICHMAN D, TSUR G, et al. FasT-match: fast affine template matching[C]∥2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2013: 2331-2338. |
10 | MUHAMMAD U, TANVIR M, KHURSHID K. Feature based correspondence: A comparative study on image matching algorithms[J]. International Journal of Advanced Computer Science and Applications, 2016, 7(3): 235-246. |
11 | 傅卫平, 秦川, 刘佳, 等. 基于SIFT算法的图像目标匹配与定位[J]. 仪器仪表学报, 2011, 32(1): 163-169. |
FU WP, QIN C, LIU J, et al. Matching and location of image object based on SIFT algorithm[J]. Chinese Journal of Scientific Instrument, 2011, 32(1): 163-169 (in Chinese) . | |
12 | 李晓明, 郝沙沙, 陈双慧. 结合先验知识的海底图像配准方法[J]. 计算机辅助设计与图形学学报, 2023, 35(11): 1743-1750. |
LI X M, HAO S S, CHEN S H. Seabed image matching by incorporating prior knowledge[J]. Journal of Computer-Aided Design & Computer Graphics, 2023, 35(11): 1743-1750 (in Chinese). | |
13 | 曾国奇, 牛子凡, 郑丽丽, 等. 基于球形变换的无人机视频图像实时拼接方法[J]. 航空学报, 2023, 44(24): 328364. |
ZENG G Q, NIU Z F, ZHENG L L, et al. A real time video image stitching method for UAV based on spherical transformation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(24): 328364 (in Chinese). | |
14 | 冯亦东, 孙跃. 基于SURF特征提取和FLANN搜索的图像匹配算法[J]. 图学学报, 2015, 36(4): 650-654. |
FENG DY, SUN Y. Image matching algorithm based on SURF feature extraction and FLANN search[J]. Journal of Graphics, 2015, 36(4): 650-654 (in Chinese) . | |
15 | 李小红, 谢成明, 贾易臻, 等. 基于ORB特征的快速目标检测算法[J]. 电子测量与仪器学报, 2013, 27(5): 455-460. |
LI X H, XIE C M, JIA Y Z, et al. Rapid moving object detection algorithm based on ORB features[J]. Journal of Electronic Measurement and Instrumentation, 2013, 27(5): 455-460 (in Chinese). | |
16 | MUR-ARTAL R, MONTIEL J M M, TARDOS J D. ORB-SLAM: A versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. |
17 | SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue: Learning feature matching with graph neural networks[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 4937-4946. |
18 | WANG K, LENG C C, YAN H P, et al. Feature matching based on Gaussian kernel convolution and minimum relative motion[J]. Engineering Applications of Artificial Intelligence, 2024, 131: 107795. |
19 | SUN J M, SHEN Z H, WANG Y A, et al. LoFTR: detector-free local feature matching with transformers[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 8918-8927. |
20 | REDMON J, FARHADI A. YOLOv3: an incremental improvement[DB/OL]. arXiv preprint: 1804.02767,2018. |
/
〈 |
|
〉 |