special column

Detection of air balloon with polarimetric weather radar

  • Jiankai HUANG ,
  • Jiapeng YIN ,
  • Mengyun AN ,
  • Chen PANG ,
  • Yongzhen LI ,
  • Xuesong WANG
Expand
  • College of Electronic Science and Technology,National University of Defense Technology,ChangSha 410073,China

Received date: 2024-01-18

  Revised date: 2024-04-09

  Accepted date: 2024-05-13

  Online published: 2024-05-29

Supported by

National Natural Science Foundation of China(61971429);Research Program of National University of Defense Technology(ZK21-25);Hunan Province Postgraduate Research Innovation Project(QL20220012)

Abstract

In recent years, the emergence of anomalous aerial situations induced by air balloons has posed significant threats to national security, airspace security, and civil aviation safety. Air balloons, characterized by their composition of medium materials and smooth surface, elude conventional radar detection. To address the inadequacy of current methods in detecting air balloons at airports and similar facilities, this study proposes a novel detection approach based on polarimetric fusion utilizing the coherent pulse compression ratio. The coherent pulse compression ratio of air balloon targets is leveraged to discern and filter out ground clutter. Then, polarization fusion processing is conducted to reduce false alarms, and further refinement is made using morphological image analysis to eliminate spurious targets. Results of processing real-world air balloon data collected by dual-polarization weather radar shows that this method demonstrates effective detection and reduced background clutter and RF interference false alarms. The proposed approach, considering the scattering characteristics of air balloons, exhibits a performance enhancement of 3.2 dB over conventional methods. Notably, it equips existing polarimetric weather radar systems with air balloon detection and early warning capabilities without compromising their current operational functionalities. With its computational efficiency and practical implementation feasibility, this method holds promise for wide-spread integration into existing polarimetric weather radar systems.

Cite this article

Jiankai HUANG , Jiapeng YIN , Mengyun AN , Chen PANG , Yongzhen LI , Xuesong WANG . Detection of air balloon with polarimetric weather radar[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(14) : 630188 -630188 . DOI: 10.7527/S1000-6893.2024.30188

References

1 杨建军, 廖秋燕, 王卫星, 等. 空飘球在军事对抗中的运用[J]. 舰船电子对抗202245(2): 28-31.
  YANG J J, LIAO Q Y, WANG W X, et al. Application of air floating ball to military confrontation[J]. Shipboard Electronic Countermeasure202245(2): 28-31 (in Chinese).
2 BELLEMARE M G, CANDIDO S, CASTRO P S, et al. Autonomous navigation of stratospheric balloons using reinforcement learning[J]. Nature2020588: 77-82.
3 邓小龙, 杨希祥, 朱炳杰, 等. 智能平流层浮空器Loon关键技术分析与仿真[J]. 航空学报202344(8): 127412.
  DENG X L, YANG X X, ZHU B J, et al. Simulation research and key technologies analysis of intelligent stratospheric aerostat Loon[J]. Acta Aeronautica et Astronautica Sinica202344(8): 127412 (in Chinese).
4 彭桂林, 万志强. 中国浮空器遥感遥测应用现状与展望[J]. 地球信息科学学报201921(4): 504-511.
  PENG G L, WAN Z Q. The present situation and prospect of aerostat applied to remote sensing and remote survey in China[J]. Journal of Geo-Information Science201921(4): 504-511 (in Chinese).
5 FAQIHURROHMAN A, MARTONO H K. State responsibilities on the disturbance of the flight path to Yogyakarta by air balloons to guarantee flight safety[C]∥Proceedings of the 2nd Tarumanagara International Conference on the Applications of Social Sciences and Humanities (TICASH 2020). Paris: Atlantis Press, 2020: 815-821.
6 SIMON HRADECKY. Qatar B773 at Sao Paulo on Jul 3rd 2022, hot air balloon on final approach[EB/OL]. (2022-7-4)[2023-7-30]. .
7 YAN B, PAOLINI E, XU L P, et al. A target detection and tracking method for multiple radar systems[J]. IEEE Transactions on Geoscience and Remote Sensing202260: 5114721.
8 马伊清. 民航机场天气雷达现状及应用需求分析[J]. 电子世界2019(1): 96, 98.
  MA Y Q. Present situation and application demand analysis of weather radar in civil aviation airport[J]. Electronics World2019(1): 96, 98 (in Chinese).
9 陈唯实, 黄毅峰, 卢贤锋, 等. 基于气象雷达的鸟类迁徙监视预警[J]. 中国民用航空2020325: 48-51.
  CHEN W S, HUANG Y F, LU X F, et al. Surveillance and early warning of bird migration based on weather radar[J]. China Civil Aviation2020325: 48-51 (in Chinese).
10 王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报20165(2): 119-131.
  WANG X S. Status and prospects of radar polarimetry techniques[J]. Journal of Radars20165(2): 119-131 (in Chinese).
11 BRINGI V N, CHANDRASEKAR V. Polarimetric Doppler weather radar: Principles and applications[M]. Cambridge: Cambridge University Press, 2001.
12 SINCLAIR G. The transmission and reception of elliptically polarized waves[J]. Proceedings of the IRE195038(2): 148-151.
13 KENNAUGH M E. Polarization properties of radar reflections [D]. Columbus: The Ohio State University, 1952.
14 HUYNEN J R. Phenomenological theory of radar targets[M]∥Electromagnetic Scattering. Amsterdam: Elsevier, 1978: 653-712.
15 YAMAGUCHI Y, BOERNER W M, EOM H J, et al. On characteristic polarization states in the cross-polarized radar channel[J]. IEEE Transactions on Geoscience and Remote Sensing199230(5): 1078-1080.
16 YAMAGUCHI Y. Fundamentals of polarimetric radar and its application [M]. Tokyo: Realize Inc., 1998.
17 CLOUDE S R, POTTIER E. A review of target decomposition theorems in radar polarimetry[J]. IEEE Transactions on Geoscience and Remote Sensing199634(2): 498-518.
18 KROGAGER E. New decomposition of the radar target scattering matrix[J]. Electronics Letters199026: 1525-1527.
19 CAMERON W L, LEUNG L K. Feature motivated polarization scattering matrix decomposition[C]∥IEEE International Conference on Radar. Piscataway: IEEE Press, 2002: 549-557.
20 CAMERON W L, YOUSSEF N N, LEUNG L K. Simulated polarimetric signatures of primitive geometrical shapes[J]. IEEE Transactions on Geoscience and Remote Sensing199634(3): 793-803.
21 CAMERON W L, RAIS H. Conservative polarimetric scatterers and their role in incorrect extensions of the Cameron decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing200644(12): 3506-3516.
22 FREEMAN A, DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing199836(3): 963-973.
23 CLOUDE S R, POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE transactions on geoscience and remote sensing199735(1): 68-78.
24 杨健, 曾亮, 马文婷, 等. 雷达目标极化散射特征提取的研究进展[J]. 电波科学学报201934(1): 12-18.
  YANG J, ZENG L, MA W T, et al. Recent advances on extraction of polarimetric scattering features of radar target[J]. Chinese Journal of Radio Science201934(1): 12-18 (in Chinese).
25 GAUTHREAUX S A Jr, SHAPIRO A M, MAYER D, et al. Detecting bird movements with L-band avian radar and S-band dual-polarization Doppler weather radar[J]. Remote Sensing in Ecology and Conservation20195(3): 237-246.
26 VAN DOREN B M, HORTON K G. A continental system for forecasting bird migration[J]. Science2018361(6407): 1115-1118.
27 STEPANIAN P M, HORTON K G, MELNIKOV V M, et al. Dual-polarization radar products for biological applications[J]. Ecosphere20167(11): e01539.
28 LIN T Y, WINNER K, BERNSTEIN G, et al. MistNet: Measuring historical bird migration in the US using archived weather radar data and convolutional neural networks[J]. Methods in Ecology and Evolution201910(11): 1908-1922.
29 DOKTER A M, DESMET P, SPAAKS J H, et al. BioRad: Biological analysis and visualization of weather radar data[J]. Ecography201942(5): 852-860.
30 NILSSON C, LA SORTE F A, DOKTER A, et al. Bird strikes at commercial airports explained by citizen science and weather radar data[J]. Journal of Applied Ecology202158(10): 2029-2039.
31 孙召平, 张持岸, 张建云. 一种基于高斯模型的自适应地物杂波滤波算法[J]. 太赫兹科学与电子信息学报201311(2): 250-253, 259.
  SUN Z P, ZHANG C A, ZHANG J Y. An adaptive ground clutter filter algorithm based on Gaussian model[J]. Journal of Terahertz Science and Electronic Information Technology201311(2): 250-253, 259 (in Chinese).
32 RICHARDS M A. Fundamentals of radar signal processing[M]. New York: McGraw-Hill, 2005.
Outlines

/