Fluid Mechanics and Flight Mechanics

Lift improvement mechanism of membrane airfoil using dynamic mode decomposition

  • Shilin HU ,
  • Bingzhou CHEN ,
  • Wei KANG
Expand
  • School of Astronautics,Northwestern Polytechnical University,Xi’an 710072,China
E-mail: wkang@nwpu.edu.cn

Received date: 2024-04-28

  Revised date: 2024-05-07

  Accepted date: 2024-05-13

  Online published: 2024-05-22

Supported by

National Natural Science Foundation of China(11972307);Aeronautical Science Foundation of China(JCKY2021204B141)

Abstract

Membrane airfoils can adaptively improve the flow distribution on the surface of the airfoil using aeroelastic effects in the low Reynolds number flow, which offers a novel aerodynamic design concept for smart aerocraft. In this paper, the membrane material is directly applied to the design of airfoil. Numerical calculations for the fluid-structure interaction of the membrane airfoil with different angles of attack and length of membrane are conducted. Modal analysis of the flow field of the membrane airfoil is performed based on dynamic mode decomposition. The results indicate that compared to the rigid airfoil, the membrane airfoil shows lift enhancement when there exists a lock-in phenomenon between the flow and the membrane structure. The lift enhancement of the membrane airfoil at the angle of attack of 16° is 21.74%, which is attributed to the energy feedback of pressure propagation generated by membrane vibration on the shear layer of the flow. The lift enhancement of the membrane airfoil with the length of membrane of 0.65 times the chord length is 14.22%. The upper surface of the membrane airfoil in this configuration can generate a downstream pressure propagation with a large pressure phase gradient, which allows the flow on the surface can obtain the maximum energy from structural vibration feedback. The lift enhancement of the membrane airfoil in this configuration is much greater than that in other configurations. The proposed methods and research conclusions can provide important theoretical support for active flow control.

Cite this article

Shilin HU , Bingzhou CHEN , Wei KANG . Lift improvement mechanism of membrane airfoil using dynamic mode decomposition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(2) : 130618 -130618 . DOI: 10.7527/S1000-6893.2024.30618

References

1 HASSANALIAN M, ABDELKEFI A. Classifications, applications, and design challenges of drones: A review[J]. Progress in Aerospace Sciences201791: 99-131.
2 TIOMKIN S, RAVEH D E. A review of membrane-wing aeroelasticity[J]. Progress in Aerospace Sciences2021126: 100738.
3 TIOMKIN S, RAVEH D E. On membrane-wing stability in laminar flow[J]. Journal of Fluids and Structures201991: 102694.
4 THWAITES B. The aerodynamic theory of sails. I. Two-dimensional sails[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences1961261(1306): 402-422.
5 NIELSEN J N. Theory of flexible aerodynamic surfaces[J]. Journal of Applied Mechanics196330(3): 435-442.
6 VANDEN-BROECK J M. Nonlinear two-dimensional sail theory[J]. Physics of Fluids198225(3): 420-423.
7 SMITH R, SHYY W. Computational model of flexible membrane wings in steady laminar flow[J]. AIAA Journal199533(10): 1769-1777.
8 SMITH R, SHYY W. Computation of aerodynamic coefficients for a flexible membrane airfoil in turbulent flow: A comparison with classical theory[J]. Physics of Fluids19968(12): 3346-3353.
9 GORDNIER R. High fidelity computational simulation of a membrane wing airfoil[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 614.
10 SONG A, TIAN X D, ISRAELI E, et al. Aeromechanics of membrane wings with implications for animal flight[J]. AIAA Journal200846(8): 2096-2106.
11 ROJRATSIRIKUL P, WANG Z, GURSUL I. Unsteady fluid-structure interactions of membrane airfoils at low Reynolds numbers[J]. Experiments in Fluids200946(5): 859-872.
12 ROJRATSIRIKUL P, WANG Z, GURSUL I. Effect of pre-strain and excess length on unsteady fluid-structure interactions of membrane airfoils[J]. Journal of Fluids and Structures201026(3): 359-376.
13 SUN X J, ZHANG X Y, SU Z A, et al. Experimental study of aerodynamic characteristics of partially flexible NACA0012 airfoil[J]. AIAA Journal202260(9): 5386-5400.
14 TAIRA K, BRUNTON S L, DAWSON S T M, et al. Modal analysis of fluid flows: An overview[J]. AIAA Journal201755(12): 4013-4041.
15 TAIRA K, HEMATI M S, BRUNTON S L, et al. Modal analysis of fluid flows: Applications and outlook[J]. AIAA Journal201958(3): 998-1022.
16 SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics2010656: 5-28.
17 SCHMID P J. Dynamic mode decomposition and its variants[J]. Annual Review of Fluid Mechanics202254: 225-254.
18 ZHONG J W, LI J Y, LIU H Z. Analysis of dynamic stall control on a pitching airfoil using dynamic mode decomposition[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy2023237(8): 1699-1714.
19 ZHAO M, XU L C, LI X J, et al. Dynamic stall of pitching tubercled wings in vortical wake flowfield[J]. Physics of Fluids202335(1): 015122.
20 叶坤, 武洁, 叶正寅, 等. 动力学模态分解和本征正交分解对圆柱绕流稳定性的分析[J]. 西北工业大学学报201735(4): 599-607.
  YE K, WU J, YE Z Y, et al. Anslysis circular cylinder flow using dynamic mode and proper orthogonal decomposition[J]. Journal of Northwestern Polytechnical University201735(4): 599-607 (in Chinese).
21 STANKIEWICZ W. Recursive dynamic mode decomposition for the flow around two square cylinders in tandem configuration[J]. Journal of Fluids and Structures2022110: 103515.
22 ZHANG H H, JIA L F, FU S T, et al. Vortex shedding analysis of flows past forced-oscillation cylinder with dynamic mode decomposition[J]. Physics of Fluids202335(5): 053618.
23 FELDHUSEN-HOFFMANN A, LAGEMANN C, LOOSEN S, et al. Analysis of transonic buffet using dynamic mode decomposition[J]. Experiments in Fluids202162(4): 66.
24 WU Y Z, TAO R, YAO Z F, et al. Analysis of low-order modal coherent structures in cavitation flow field based on dynamic mode decomposition and finite-time Lyapunov exponent[J]. Physics of Fluids202335(8): 085110.
25 WEINER A, SEMAAN R. Robust dynamic mode decomposition methodology for an airfoil undergoing transonic shock buffet[J]. AIAA Journal202361(10): 4456-4467.
26 寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报201637(9): 2679-2689.
  KOU J Q, ZHANG W W, GAO C Q. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica201637(9): 2679-2689 (in Chinese).
27 POPLINGHER L, RAVEH D E. Comparative modal study of the two-dimensional and three-dimensional transonic shock buffet[J]. AIAA Journal202361(1): 125-144.
28 IYER P S, MAHESH K. A numerical study of shear layer characteristics of low-speed transverse jets[J]. Journal of Fluid Mechanics2016790: 275-307.
29 MOTHEAU E, NICOUD F, POINSOT T. Mixed acoustic-entropy combustion instabilities in gas turbines[J]. Journal of Fluid Mechanics2014749: 542-576.
30 康伟, 胡仕林, 王彦清. 介电弹性薄膜翼型的增升效应机理[J]. 航空学报202344(18): 107-118.
  KANG W, HU S L, WANG Y Q. Lift enhancement mechanism of dielectric elastic membrane airfoil[J]. Acta Aeronautica et Astronautica Sinica202344(18): 107-118 (in Chinese).
31 KANG W, HU S L, WANG Y Q. Lift enhancement mechanism study of the airfoil with a dielectric elastic membrane skin[J]. Journal of Fluids and Structures2024125: 104083.
32 TISSOT G, CORDIER L, BENARD N, et al. Model reduction using Dynamic Mode Decomposition[J]. Comptes Rendus Mécanique2014342(6-7): 410-416.
33 ROJRATSIRIKUL P, GENC M S, WANG Z, et al. Flow-induced vibrations of low aspect ratio rectangular membrane wings[J]. Journal of Fluids and Structures201127(8): 1296-1309.
Outlines

/