ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Lift improvement mechanism of membrane airfoil using dynamic mode decomposition
Received date: 2024-04-28
Revised date: 2024-05-07
Accepted date: 2024-05-13
Online published: 2024-05-22
Supported by
National Natural Science Foundation of China(11972307);Aeronautical Science Foundation of China(JCKY2021204B141)
Membrane airfoils can adaptively improve the flow distribution on the surface of the airfoil using aeroelastic effects in the low Reynolds number flow, which offers a novel aerodynamic design concept for smart aerocraft. In this paper, the membrane material is directly applied to the design of airfoil. Numerical calculations for the fluid-structure interaction of the membrane airfoil with different angles of attack and length of membrane are conducted. Modal analysis of the flow field of the membrane airfoil is performed based on dynamic mode decomposition. The results indicate that compared to the rigid airfoil, the membrane airfoil shows lift enhancement when there exists a lock-in phenomenon between the flow and the membrane structure. The lift enhancement of the membrane airfoil at the angle of attack of 16° is 21.74%, which is attributed to the energy feedback of pressure propagation generated by membrane vibration on the shear layer of the flow. The lift enhancement of the membrane airfoil with the length of membrane of 0.65 times the chord length is 14.22%. The upper surface of the membrane airfoil in this configuration can generate a downstream pressure propagation with a large pressure phase gradient, which allows the flow on the surface can obtain the maximum energy from structural vibration feedback. The lift enhancement of the membrane airfoil in this configuration is much greater than that in other configurations. The proposed methods and research conclusions can provide important theoretical support for active flow control.
Shilin HU , Bingzhou CHEN , Wei KANG . Lift improvement mechanism of membrane airfoil using dynamic mode decomposition[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2025 , 46(2) : 130618 -130618 . DOI: 10.7527/S1000-6893.2024.30618
1 | HASSANALIAN M, ABDELKEFI A. Classifications, applications, and design challenges of drones: A review[J]. Progress in Aerospace Sciences, 2017, 91: 99-131. |
2 | TIOMKIN S, RAVEH D E. A review of membrane-wing aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 126: 100738. |
3 | TIOMKIN S, RAVEH D E. On membrane-wing stability in laminar flow[J]. Journal of Fluids and Structures, 2019, 91: 102694. |
4 | THWAITES B. The aerodynamic theory of sails. I. Two-dimensional sails[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1961, 261(1306): 402-422. |
5 | NIELSEN J N. Theory of flexible aerodynamic surfaces[J]. Journal of Applied Mechanics, 1963, 30(3): 435-442. |
6 | VANDEN-BROECK J M. Nonlinear two-dimensional sail theory[J]. Physics of Fluids, 1982, 25(3): 420-423. |
7 | SMITH R, SHYY W. Computational model of flexible membrane wings in steady laminar flow[J]. AIAA Journal, 1995, 33(10): 1769-1777. |
8 | SMITH R, SHYY W. Computation of aerodynamic coefficients for a flexible membrane airfoil in turbulent flow: A comparison with classical theory[J]. Physics of Fluids, 1996, 8(12): 3346-3353. |
9 | GORDNIER R. High fidelity computational simulation of a membrane wing airfoil[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 614. |
10 | SONG A, TIAN X D, ISRAELI E, et al. Aeromechanics of membrane wings with implications for animal flight[J]. AIAA Journal, 2008, 46(8): 2096-2106. |
11 | ROJRATSIRIKUL P, WANG Z, GURSUL I. Unsteady fluid-structure interactions of membrane airfoils at low Reynolds numbers[J]. Experiments in Fluids, 2009, 46(5): 859-872. |
12 | ROJRATSIRIKUL P, WANG Z, GURSUL I. Effect of pre-strain and excess length on unsteady fluid-structure interactions of membrane airfoils[J]. Journal of Fluids and Structures, 2010, 26(3): 359-376. |
13 | SUN X J, ZHANG X Y, SU Z A, et al. Experimental study of aerodynamic characteristics of partially flexible NACA0012 airfoil[J]. AIAA Journal, 2022, 60(9): 5386-5400. |
14 | TAIRA K, BRUNTON S L, DAWSON S T M, et al. Modal analysis of fluid flows: An overview[J]. AIAA Journal, 2017, 55(12): 4013-4041. |
15 | TAIRA K, HEMATI M S, BRUNTON S L, et al. Modal analysis of fluid flows: Applications and outlook[J]. AIAA Journal, 2019, 58(3): 998-1022. |
16 | SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656: 5-28. |
17 | SCHMID P J. Dynamic mode decomposition and its variants[J]. Annual Review of Fluid Mechanics, 2022, 54: 225-254. |
18 | ZHONG J W, LI J Y, LIU H Z. Analysis of dynamic stall control on a pitching airfoil using dynamic mode decomposition[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2023, 237(8): 1699-1714. |
19 | ZHAO M, XU L C, LI X J, et al. Dynamic stall of pitching tubercled wings in vortical wake flowfield[J]. Physics of Fluids, 2023, 35(1): 015122. |
20 | 叶坤, 武洁, 叶正寅, 等. 动力学模态分解和本征正交分解对圆柱绕流稳定性的分析[J]. 西北工业大学学报, 2017, 35(4): 599-607. |
YE K, WU J, YE Z Y, et al. Anslysis circular cylinder flow using dynamic mode and proper orthogonal decomposition[J]. Journal of Northwestern Polytechnical University, 2017, 35(4): 599-607 (in Chinese). | |
21 | STANKIEWICZ W. Recursive dynamic mode decomposition for the flow around two square cylinders in tandem configuration[J]. Journal of Fluids and Structures, 2022, 110: 103515. |
22 | ZHANG H H, JIA L F, FU S T, et al. Vortex shedding analysis of flows past forced-oscillation cylinder with dynamic mode decomposition[J]. Physics of Fluids, 2023, 35(5): 053618. |
23 | FELDHUSEN-HOFFMANN A, LAGEMANN C, LOOSEN S, et al. Analysis of transonic buffet using dynamic mode decomposition[J]. Experiments in Fluids, 2021, 62(4): 66. |
24 | WU Y Z, TAO R, YAO Z F, et al. Analysis of low-order modal coherent structures in cavitation flow field based on dynamic mode decomposition and finite-time Lyapunov exponent[J]. Physics of Fluids, 2023, 35(8): 085110. |
25 | WEINER A, SEMAAN R. Robust dynamic mode decomposition methodology for an airfoil undergoing transonic shock buffet[J]. AIAA Journal, 2023, 61(10): 4456-4467. |
26 | 寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9): 2679-2689. |
KOU J Q, ZHANG W W, GAO C Q. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2679-2689 (in Chinese). | |
27 | POPLINGHER L, RAVEH D E. Comparative modal study of the two-dimensional and three-dimensional transonic shock buffet[J]. AIAA Journal, 2023, 61(1): 125-144. |
28 | IYER P S, MAHESH K. A numerical study of shear layer characteristics of low-speed transverse jets[J]. Journal of Fluid Mechanics, 2016, 790: 275-307. |
29 | MOTHEAU E, NICOUD F, POINSOT T. Mixed acoustic-entropy combustion instabilities in gas turbines[J]. Journal of Fluid Mechanics, 2014, 749: 542-576. |
30 | 康伟, 胡仕林, 王彦清. 介电弹性薄膜翼型的增升效应机理[J]. 航空学报, 2023, 44(18): 107-118. |
KANG W, HU S L, WANG Y Q. Lift enhancement mechanism of dielectric elastic membrane airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 107-118 (in Chinese). | |
31 | KANG W, HU S L, WANG Y Q. Lift enhancement mechanism study of the airfoil with a dielectric elastic membrane skin[J]. Journal of Fluids and Structures, 2024, 125: 104083. |
32 | TISSOT G, CORDIER L, BENARD N, et al. Model reduction using Dynamic Mode Decomposition[J]. Comptes Rendus Mécanique, 2014, 342(6-7): 410-416. |
33 | ROJRATSIRIKUL P, GENC M S, WANG Z, et al. Flow-induced vibrations of low aspect ratio rectangular membrane wings[J]. Journal of Fluids and Structures, 2011, 27(8): 1296-1309. |
/
〈 |
|
〉 |