ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Learning-based hierarchical coordination fault-tolerant method for hypersonic vehicles
Received date: 2024-01-19
Revised date: 2024-02-27
Accepted date: 2024-05-13
Online published: 2024-05-15
Supported by
National Natural Science Foundation of China(62173022);Aeronautical Science Foundation of China(2018ZC51031);Outstanding Research Project of Shen Yuan Honors College, BUAA(230121205)
To enhance fault-tolerance capability and mission completion ability of hypersonic vehicles under various severity levels of actuator faults, this paper proposes a learning-based hierarchical coordination fault-tolerant method for hypersonic vehicles. Firstly, to achieve online quantitative analysis of the severity of actuator faults, deep neural network-based approaches for predicting vehicle trim capability and reachable region boundaries are proposed. Subsequently, using the above prediction methods as “bridges”, a hierarchical coordinated fault-tolerance framework is constructed. The method assesses the severity of current actuator faults in real-time based on prediction results, then selectively coordinates fault-tolerant mechanisms at the control, guidance, and planning layers to mitigate the impact of actuator faults on flight performance and mission completion capability as much as possible. Finally, simulations under three different severity levels of actuator faults are conducted to validate the effectiveness of the proposed fault-tolerant method.
Tiancai WU , Honglun WANG , Bin REN , Guocheng YAN , Xingyu WU . Learning-based hierarchical coordination fault-tolerant method for hypersonic vehicles[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(22) : 330191 -330191 . DOI: 10.7527/S1000-6893.2024.30191
1 | DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1-18. |
2 | 姜雨石. 高超声速飞行器再入故障诊断及容错控制方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
JIANG Y S. Research on reentry fault diagnosis and fault-tolerant control method of hypersonic vehicle[D].Harbin: Harbin Institute of Technology, 2021 (in Chinese). | |
3 | WU T C, WANG H L, YU Y, et al. Quantized fixed-time fault-tolerant attitude control for hypersonic reentry vehicles[J]. Applied Mathematical Modelling, 2021, 98: 143-160. |
4 | AN H, LIU J X, WANG C H, et al. Approximate back-stepping fault-tolerant control of the flexible air-breathing hypersonic vehicle[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1680-1691. |
5 | LI P, YU X, ZHANG Y M, et al. Adaptive multivariable integral TSMC of a hypersonic gliding vehicle with actuator faults and model uncertainties[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6): 2723-2735. |
6 | YU X, LI P, ZHANG Y M. Fixed-time actuator fault accommodation applied to hypersonic gliding vehicles[J]. IEEE Transactions on Automation Science and Engineering, 2021, 18(3): 1429-1440. |
7 | HU Q L, WANG C L, LI Y, et al. Adaptive control for hypersonic vehicles with time-varying faults[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3): 1442-1455. |
8 | XU B, SHI Z K, SUN F C, et al. Barrier Lyapunov function based learning control of hypersonic flight vehicle with AOA constraint and actuator faults[J]. IEEE Transactions on Cybernetics, 2019, 49(3): 1047-1057. |
9 | WU T C, WANG H L, YU Y, et al. Hierarchical fault-tolerant control for over-actuated hypersonic reentry vehicles[J]. Aerospace Science and Technology, 2021, 119: 107134. |
10 | OPPENHEIMER M, DOMAN D, BOLENDER M. A method for estimating control failure effects for aerodynamic vehicle trajectory retargeting: AIAA-2004-5169[R]. Reston: AIAA, 2004. |
11 | SHAFFER P J, ROSS I M, OPPENHEIMER M W, et al. Optimal trajectory reconfiguration and retargeting for reusable launch vehicles[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(6): 1794-1802. |
12 | 余跃, 王宏伦. 基于深度学习的高超声速飞行器再人预测校正容错制导[J]. 兵工学报, 2020, 41(4): 656-669. |
YU Y, WANG H L. Deep learning-based reentry predictor-corrector fault-tolerant guidance for hypersonic vehicles[J]. Acta Armamentarii, 2020, 41(4): 656-669 (in Chinese). | |
13 | LV X H, JIANG B, QI R Y, et al. Survey on nonlinear reconfigurable flight control[J]. Journal of Systems Engineering and Electronics, 2013, 24(6): 971-983. |
14 | 钱佳淞, 齐瑞云, 姜斌. 高超声速飞行器再入容错制导技术综述[J]. 飞行力学, 2015, 33(05): 390-394. |
QIAN J S, QI R Y, JIANG B. Review of reentry fault-tolerant guidance technology on hypersonic vehicles[J]. Flight Dynamics, 2015, 33(05): 390-394 (in Chinese). | |
15 | YU X, ZHOU S C, GUO K X, et al. Integrated reconfiguration mechanism for quadrotors with capability analysis against rotor failure[J]. Journal of Guidance, Control, and Dynamics, 2022, 46(2): 401-409. |
16 | SCHIERMAN J D, WARD D G, HULL J R, et al. Integrated adaptive guidance and control for re-entry vehicles with flight test results[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 975-988. |
17 | 郭雷, 王陈亮, 王雨, 等. 多源干扰下高超声速飞行器自主精细控制[J]. 宇航学报, 2023, 44(4): 558-565. |
GUO L, WANG C L, WANG Y, et al. Autonomous refined control for hypersonic flight vehicles with multiple disturbances[J]. Journal of Astronautics, 2023, 44(4): 558-565 (in Chinese). | |
18 | YU X, FU Y, PENG X Y. Fuzzy logic aided fault-tolerant control applied to transport aircraft subject to actuator stuck failures[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(4): 2050-2061. |
19 | 武天才, 王宏伦, 任斌, 等. 考虑规避与突防的高超声速飞行器智能容错制导控制一体化设计方法[J]. 航空学报, 2024, 45(15): 329607. |
WU T C, WANG H L, REN B, et al. Learning-based integrated fault-tolerant guidance and control method for hypersonic vehicles considering avoidance and penetration[J]. Acta Aeronautica et Astronautica Sinica, 2024,45(15): 329607 (in Chinese). | |
20 | 章吉力, 周大鹏, 杨大鹏, 等. 禁飞区影响下的空天飞机可达区域计算方法[J]. 航空学报, 2021, 42(8): 525771. |
ZHANG J L, ZHOU D P, YANG D P, et al. Computation method for reachable domain of aerospace plane under the influence of no-fly zone[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525771 (in Chinese). | |
21 | YU Y, WANG H L, LI N, et al. Finite-time model-assisted active disturbance rejection control with a novel parameters optimizer for hypersonic reentry vehicle subject to multiple disturbances[J]. Aerospace Science and Technology, 2018, 79: 588-600. |
/
〈 |
|
〉 |