Solid Mechanics and Vehicle Conceptual Design

3D dynamic modelling and constraints analysis of taxiing deviation correction control

  • Hongbo XIN ,
  • Qingyang CHEN ,
  • Peng WANG ,
  • Yujie WANG ,
  • Zhongxi HOU
Expand
  • College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China

Received date: 2024-01-15

  Revised date: 2024-02-22

  Accepted date: 2024-05-06

  Online published: 2024-05-14

Supported by

Natural Science Foundation of Hunan Province(2023JJ30631);National Level Project(2021ZD01403XX-01);Science and Technology Innovation Program of Hunan Province(2021RC3077)

Abstract

As a key aspect in the wheeled takeoff and landing of fixed-wing Unmanned Aerial Vehicles (UAVs), the safety of the taxiing process directly determines the success of the takeoff and landing procedures. The model accuracy and deviation correction control are crucial for the credibility of simulation results, and directly affect actual flight safety. This paper investigates the characteristics of the 3D dynamics and deviation correction control constraints in the taxiing process of the tricycle-gear fixed-wing UAV. Firstly, a continuous function approximation model of tire friction and a speed-based analysis method of lateral force are proposed to satisfy the demands of all states and real-time simulation of UAV taxiing process. Secondly, a relatively accurate 3D dynamic model of the taxiing deviation control process is established by fully considering the 3D effects of the landing gear. Thirdly, taking the centripetal force required for taxiing correction as the breakthrough point, a constraint analysis method for taxiing deviation is developed. Using a UAV as an example, the controllability boundaries of the front wheel and rudder of the UAV are analyzed and established. Finally, the accuracy and feasibility of the proposed modeling and constraint analysis method are verified through simulation.

Cite this article

Hongbo XIN , Qingyang CHEN , Peng WANG , Yujie WANG , Zhongxi HOU . 3D dynamic modelling and constraints analysis of taxiing deviation correction control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(21) : 230154 -230154 . DOI: 10.7527/S1000-6893.2024.30154

References

1 张祥, 李广文. 着陆滑跑地面综合控制技术研究[J]. 弹箭与制导学报202242(1): 106-113.
  ZHANG X, LI G W. Research on the ground integrated control technology of taxiing [J]. Journal of Projectiles, Rockets, Missiles and Guidance202242(1): 106-113 (in Chinese).
2 王勇, 王英勋. 无人机滑跑纠偏控制[J]. 航空学报2008(): 142-149.
  WANG Y, WANG Y X. Lateral deviation correction control for UAV taxiing[J]. Acta Aeronautica et Astronautica Sinica200829(S1): 142-149 (in Chinese).
3 朱晨辰, 王彬文, 刘小川, 等. 复杂环境下起落架动力学行为研究现状与展望[J]. 航空科学技术202334(1): 1-11.
  ZHU C C, WANG B W, LIU X C, et al. Research status and prospect of landing gear dynamics in complex environment[J]. Aeronautical Science & Technology202334(1): 1-11 (in Chinese).
4 GUDMUNDSSON S. General aviation aircraft design: Applied methods and procedures[M]. Oxford: Butterworth-Heinemann, 2014.
5 王彦雄. 飞翼布局无人机起降控制技术研究[D]. 西安: 西北工业大学, 2017.
  WANG Y X. Take-off and landing control for flying-wing Unmanned Aerial Vehicle [D].Xi’an: Northwestern Polytechnical University, 2017 (in Chinese).
6 程贤斌, 高永, 孟浩, 等. 前起落架刚度对无人机起飞滑跑性能的影响[J]. 科学技术与工程. 202121(31): 13580-13586.
  CHENG X B, GAO Y, MENG H, et al. Influence of the stiffness of the nose gear on the take-off and rolling performance of unmanned aerial vehicles [J]. Science Technology and Engineering202121(31): 13580-13586 (in Chinese).
7 刘向尧, 聂宏, 魏小辉, 等. 某型飞机前起落架落震动力学的仿真分析[J]. 航空计算技术201242(4): 10-13.
  LIU X Y, NIE H, WEI X H, et al. Analysis and simulation of drop dynamic for the nose landing gear[J]. Aeronautical Computing Technique201242(4): 10-13 (in Chinese).
8 乔定定. 无人飞行器地面滑跑纠偏复合控制与仿真[D]. 成都: 电子科技大学, 2022.
  QIAO D D. Compound control and simulation of ground taxiing and deviation correction of unmanned aerial vehicle [D].Chengdu: University of Electronic Science and Technology of China, 2022 (in Chinese).
9 王晨, 马红亮, 王维军, 等. 基于工程应用的起落架动力学建模及仿真结果分析[J]. 空天技术20244: 62-75.
  WANG C, MA H L, WANG W J, et al. Dynamic modeling and simulation results analysis of landing gear based on engineering applications[J]. Aerospace Technology20244: 62-75 (in Chinese).
10 PACEJKA H B, BESSELINK I J M. Magic formula tyre model with transient properties[J]. Vehicle System Dynamics199727(sup001): 234-249.
11 OERTEL C, FANDRE A. Ride comfort simulations and steps towards life time calculations RMOD-K tyre model and ADAMS[R]. 1999.
12 GIPSER M. FTire: A physically based application-oriented tyre model for use with detailed MBS and finite-element suspension models[J]. Vehicle System Dynamics200543(sup1): 76-91.
13 GALLREIN A, B?CKER M. CDTire:A tire model for comfort and durability applications[J]. Vehicle System Dynamics200745(sup1): 69-77.
14 GUO K H, REN L. A unified semi-empirical tire model with HigherAccuracy and less parameters[C]∥SAE Technical Paper Series. Warrendale: SAE International, 1999.
15 李荣强, 连小锋, 朱睿, 等. 基于机器学习的飞机起落架着陆载荷预测模型[J]. 科学技术与工程202323(18): 8011-8017.
  LI R Q, LIAN X F, ZHU R, et al. Prediction model of landing load of aircraft landing gear based on machine learning[J]. Science Technology and Engineering202323(18): 8011-8017 (in Chinese).
16 刘小川, 刘冲冲, 牟让科. 飞机起落架系统摆振动力学研究进展[J]. 航空学报202243(6): 527063.
  LIU X C, LIU C C, MOU R K. Research progress on shimmy dynamics of aircraft landing gear systems[J]. Acta Aeronautica et Astronautica Sinica202243(6): 527063 (in Chinese).
17 陆建民. 小型飞机起落架的缓冲器设计及稳定性研究[D]. 上海: 上海应用技术大学, 2021.
  LU J M. Research on shock absorber design and stability of landing gear of small aircraft [D]. Shanghai: Shanghai Institute of Technology, 2021 (in Chinese).
18 《飞机设计手册》总编委会. 飞机设计手册 第14册:起飞着陆系统设计[M]. 北京: 航空工业出版社, 2002.
  Editorial Board of the Aircraft Design Manual. Aircraft design manual volume 14: Takeoff and Landing System Design[M]. Beijing: Aviation Industry Press, 2002.
19 张国健. 飞机起落架建模理论和仿真方法的研究[D]. 沈阳: 沈阳工业大学, 2022.
  ZHANG G J. Study on the modeling theory and simulation method of aircraft landing gear [D].Shenyang: Shenyang University of Technology, 2022 (in Chinese).
20 Dowson D. History of tribology (2nd Ed.)[M]. Hoboken: Wiley, 1998.
21 BO L C, PAVELESCU D. The friction-speed relation and its influence on the critical velocity of stick-slip motion[J]. Wear198282(3): 277-289.
22 BEARD R W, MCLAIN T W. Small unmanned aircraft: Theory and practice[M]. Princeton: Princeton University Press,2012.
23 张振华, 李巍, 谢彦, 等. 基于小车式起落架地面滑跑振动仿真分析[J]. 计算机仿真202239(8): 59-63, 97.
  ZHANG Z H, LI W, XIE Y, et al. Simulation analysis of grand rolling vibration based on frame landing gear[J]. Computer Simulation202239(8): 59-63, 97 (in Chinese).
24 唐瑞琳, 巩磊, 王博. 飞机起落架动力学建模及地面运动仿真[J]. 科学技术与工程202121(16): 6889-6897.
  TANG R L, GONG L, WANG B. Landing gear dynamics modeling and aircraft ground motion simulation[J]. Science Technology and Engineering202121(16): 6889-6897 (in Chinese).
Outlines

/