ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research progress on pneumatic catapult systems
Received date: 2024-01-09
Revised date: 2024-03-22
Accepted date: 2024-04-26
Online published: 2024-05-14
Supported by
National Natural Science Foundation of China(52376040);Beijing Natural Science Foundation(JQ21010);Beijing Nova Program(20230484479);Funding of Innovation Academy for Light-duty Gas Turbine, Chinese Academy of Sciences
The pneumatic launch technology has been widely concerned and applied in in UAV take-off and other fields of weapon launching. This paper summarizes the theoretical research and engineering applications of the pneumatic ejection system. The related theoretical research progress, the research and development of the key technologies, and the development status of catapult products are discussed. In the research on the multi-refrigerant pneumatic system, it is found that compressed air launch is the majority, but the pneumatic catapult with compressed carbon dioxide as the working medium has higher performance. However, it will be limited by the triple point temperature of carbon dioxide under some operating conditions, and thus needs to be further studied to improve the comprehensive performance of the system. In the research on the basic theory of interior ballistics of the ejection system, the research methods are various, and the theoretical methods are more mature. However, in practical engineering application, both the system performance and the lightweight of equipment need to be taken into account, considering the ejection requirements for high quality and speed. Thus, it is difficult to design the ejection system, and structural design optimization for practical application needs to be further strengthened.
Xia LIU , Jian XU , Xiaoyu LI , Huinan LIU , Xinjing ZHANG , Yujie XU , Haisheng CHEN . Research progress on pneumatic catapult systems[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(22) : 30123 -030123 . DOI: 10.7527/S1000-6893.2024.30123
1 | GAJJAR B I, ZALEWSKI J. A07: On-ship landing and takeoff of Unmanned Aerial Vehicles (UAV’S)[J]. IFAC Proceedings Volumes, 2004, 37(20): 42-46. |
2 | HUSSAIN M M, SIDDIQUI B A, MEMON A. Design and analysis of rocket assisted take-off high-speed UAV[C]∥6th International Conference on Aerospace Science and Engineering, 2019. |
3 | LI J X, LIU T, GUO H G. Dynamics analysis of carrier-based UAVs with ski-jump launch[C]∥International Conference on Electrical Automation and Mechanical Engineering, 2020. |
4 | ALáEZ D, OLAZ X, PRIETO M, et al. VTOL UAV digital twin for take-off, hovering and landing in different wind conditions?[J]. Simulation Modelling Practice and Theory, 2023, 123: 102703. |
5 | ZHANG B, JIN K, KOU Y, et al. Modelling of magneto-electro-thermo-mechanical coupled behavior of the lubricating liquid film for the electromagnetic launch[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123267. |
6 | KONDRATIUK M, AMBROZIAK L. Design and dynamics of kinetic launcher for unmanned aerial vehicles[J]. Applied Sciences, 2020, 10(8): 2949. |
7 | BUDIYANTA A S, PRANOTO F S, ADI A P, et al. Design and testing of a bungee cord based launcher for LSU-02 UAV[J]. Majalah Ilmiah Pengkajian Industri, 2023, 16(3): 114-120. |
8 | ZHU Q D, LU P, YANG Z B, et al. Model research of steam catapult launch process for carrier-based aircraft[C]∥2018 37th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2018: 8519-8524. |
9 | ZHANG B, JIN K, KOU Y, et al. Modelling of magneto-electro-thermo-mechanical coupled behavior of the lubricating liquid film for the electromagnetic launch[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123267. |
10 | 王朋飞, 王志文, 贾婷婷. 无人机液压弹射系统动态复合控制试验研究[J]. 液压气动与密封, 2023, 43(9): 69-72. |
WANG P F, WANG Z W, JIA T T. Experimental study on dynamic compound control of UAV hydraulic ejection system[J]. Hydraulics Pneumatics & Seals, 2023, 43(9): 69-72 (in Chinese). | |
11 | FAHLSTROM P G, GLEASON T J. Introduction to UAV Systems, Fourth Edition[M]. New Jersey: Wiley, 2012. |
12 | 刘南宏. 无人机压缩空气弹射系统研究[D]. 北京: 中国科学院大学(中国科学院工程热物理研究所), 2021. |
LIU N H. Research on UAV compressed air ejection system[D]. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2021 (in Chinese). | |
13 | ROHINI D, SASIKUMAR C, SAMIYAPPAN P, et al. Design & analysis of solid rocket using open rocket software[J]. Materials Today: Proceedings, 2022, 64: 425-430. |
14 | 王永庆. 固定翼舰载战斗机关键技术与未来发展[J]. 航空学报, 2021, 42(8): 525859. |
WANG Y Q. Fixed-wing carrier-based aircraft: Key technologies and future development[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525859 (in Chinese). | |
15 | 纵横大鹏无人机Y.G.T. 固定翼无人机航程航时知多少[EB/OL]. |
16 | 叶帅辰, 姚晓先. 无人机他力发射技术综述[J]. 指挥与控制学报, 2018, 4(1): 15-21. |
YE S C, YAO X X. On the other-power launch technology of unmanned aerial vehicles[J]. Journal of Command and Control, 2018, 4(1): 15-21 (in Chinese). | |
17 | 赵芳, 王太江, 陈钦, 等. 压缩空气弹射在武器系统中的应用综述[J]. 现代防御技术, 2021, 49(5): 95-103. |
ZHAO F, WANG T J, CHEN Q, et al. Brief review of compressed-gas ejection application in weapon system[J]. Modern Defence Technology, 2021, 49(5): 95-103 (in Chinese). | |
18 | 中国科学院工程热物理所.中科院工程热物理所在压缩空气弹射研究方面取得重要进展[J]. 高科技与产业化, 2021, 27(1): 69. |
The Institute of Engineering Thermophysics, Chinese Academy of Sciences.The Institute of Engineering Thermophysics, Chinese Academy of Sciences, has made significant progress in compressed air ejection research[J]. High Technology and Industrialisation, 2021, 27(1): 69 (in Chinese). | |
19 | 刘夏, 张新敬, 李笑宇, 等. 压缩空气弹射系统实验与仿真[J]. 储能科学与技术, 2023, 12(6): 1831-1839. |
LIU X, ZHANG X J, LI X Y, et al. Experimental and simulation study of a compressed air ejection system[J]. Energy Storage Science and Technology, 2023, 12(6): 1831-1839 (in Chinese). | |
20 | 李博平, 李国庆, 张笈玮, 等. 压缩空气弹射系统内弹道特性[J]. 兵工学报, 2021, 42(12): 2606-2616. |
LI B P, LI G Q, ZHANG J W, et al. Interior ballistic characteristics of compressed air ejection system[J]. Acta Armamentarii, 2021, 42(12): 2606-2616 (in Chinese). | |
21 | 甄建斌, 徐诚, 王涛. 新型组合式氮气弹射系统动态仿真及性能分析[J]. 南京理工大学学报(自然科学版), 2013, 37(3): 393-397. |
ZHEN J B, XU C, WANG T. Dynamic simulation and performance analysis of new combined nitrogen ejection system[J]. Journal of Nanjing University of Science and Technology, 2013, 37(3): 393-397 (in Chinese). | |
22 | 甄建斌, 徐诚, 王涛. 新型集成式氮气弹射系统机构仿真优化设计[J]. 计算机仿真, 2013, 30(11): 54-57. |
ZHEN J B, XU C, WANG T. Institutions simulation and optimization design of new integrated nitrogen ejection system[J]. Computer Simulation, 2013, 30(11): 54-57 (in Chinese). | |
23 | 甄建斌, 徐诚, 王涛. 基于电磁阀控制的氮气弹射系统动态仿真及性能分析[J]. 弹道学报, 2013, 25(4): 106-110. |
ZHEN J B, XU C, WANG T. Dynamic simulation and performance analysis of nitrogen ejection system controlled by solenoid valve[J]. Journal of Ballistics, 2013, 25(4): 106-110 (in Chinese). | |
24 | 税朗泉, 郭姣姣. 某型三级作动筒气动弹射系统仿真研究[J]. 机械设计与制造, 2016(3): 10-13. |
SHUI L Q, GUO J J. Simulation study of an ejection system with 3-section pneumatic actuator[J]. Machinery Design & Manufacture, 2016(3): 10-13 (in Chinese). | |
25 | 易勇. 新型挂钩作动系统的研究[D]. 南京: 南京理工大学, 2006. |
YI Y. Research on a new type of hook actuating system[D]. Nanjing: Nanjing University of Science and Technology, 2006 (in Chinese). | |
26 | 戴龙成, 宣益民, 尹健. 氮气弹射系统的优化设计[J]. 计算物理, 2002, 19(3): 259-263. |
DAI L C, XUAN Y M, YIN J. Dynamic simulation and optimization of nls[J]. Chinese Journal of Computational Physics, 2002, 19(3): 259-263 (in Chinese). | |
27 | 戴龙成, 宣益民, 尹健. 氮气作动筒结构参数的优化设计[J]. 弹道学报, 2002, 14(1): 73-76, 83. |
DAI L C, XUAN Y M, YIN J. Optimization of pneumatic device system[J]. Journal of Ballistics, 2002, 14(1): 73-76, 83 (in Chinese). | |
28 | 卢立秀, 汤军社, 门党党, 等. 导弹弹射机构的建模与仿真研究[J]. 弹箭与制导学报, 2008, 28(5): 29-31, 40. |
LU L X, TANG J S, MEN D D, et al. Modeling and simulation study of missile ejection mechanism[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(5): 29-31, 40 (in Chinese). | |
29 | 徐鲲. 舰炮后坐力试验装置仿真及其控制系统的研究[D]. 武汉: 华中科技大学, 2015. |
XU K. Research on simulation and control system of naval Gun recoil test device[D].Wuhan: Huazhong University of Science and Technology, 2015 (in Chinese). | |
30 | 璩金超, 张士卫, 景凤理, 等. 元件参数对气动弹射性能影响分析[J]. 机床与液压, 2019, 47(9): 171-174. |
QU J C, ZHANG S W, JING F L, et al. Analysis of influence of component parameters on high press pneumatic ejection[J]. Machine Tool & Hydraulics, 2019, 47(9): 171-174 (in Chinese). | |
31 | 张素萍. 氮气投放系统中超高压电磁阀的可靠性研究[J]. 四川兵工学报, 2013, 34(1): 24-27. |
ZHANG S P. Research on reliability of superhigh pressure-solenoid valve for launch equipment with nitrogen resource[J]. Journal of Ordnance Equipment Engineering, 2013, 34(1): 24-27 (in Chinese). | |
32 | 赵泽. 无人机气液压弹射系统性能分析[D]. 秦皇岛: 燕山大学, 2016. |
ZHAO Z. Performance analysis of pneumatic and hydraulic ejection system of UAV[D]. Qinhuangdao: Yanshan University, 2016 (in Chinese). | |
33 | 权凌霄, 刘建伟, 宋豫, 等. 无人机气液压弹射系统建模与弹射过程仿真分析[J]. 液压与气动, 2016(1): 71-77. |
QUAN L X, LIU J W, SONG Y, et al. Modeling of pneudraulic launching system of UAV and simulation analysis of launching process[J]. Chinese Hydraulics & Pneumatics, 2016(1): 71-77 (in Chinese). | |
34 | 王雪琴, 马吴宁, 马大为, 等. 考虑泄露的无杆式高压气动弹射器内弹道精确建模及试验研究[J]. 兵工学报, 2023, 44(7): 1867-1880. |
WANG X Q, MA W N, MA D W, et al. Accurate modelling and experimental study of ballistic trajectory in rodless high-pressure pneumatic catapult considering leakage[J]. Journal of Military Engineering, 2023, 44(7): 1867-1880 (in Chinese). | |
35 | 丛龙腾, 姜超, 鲁霄光, 等. 基于 AUTODYN 的压缩空气弹射内弹道研究[J]. 航空兵器, 2014, 21(5): 46-49. |
CONG L T, JIANG C, LU X G, et al. Interior ballistic research of compressed air launcher based on AUTODYN software[J]. Aero Weaponry, 2014, 21(5): 46-49 (in Chinese). | |
36 | 李军, 胡亚, 丛龙腾, 等. 能量因素对压缩空气弹射内弹道性能影响研究[J]. 航空兵器, 2016, 23(3): 71-74. |
LI J, HU Y, CONG L T, et al. Study on the influence of energy factors on the interior ballistic performance of compressed air ejection[J]. Aero Weaponry, 2016, 23(3): 71-74 (in Chinese). | |
37 | 谢磊, 高钦和, 邵亚军. 压缩空气弹射内弹道影响因素作用规律研究[J]. 火力与指挥控制, 2019, 44(3): 116-119. |
XIE L, GAO Q H, SHAO Y J. Analysis of factors to compressed air ejection interior ballistic based on FLUENT[J]. Fire Control & Command Control, 2019, 44(3): 116-119 (in Chinese). | |
38 | 刘南宏, 张新敬, 徐玉杰, 等. 筒式压缩空气弹射系统内弹道性能研究[J]. 兵器装备工程学报, 2022, 43(1): 79-85. |
LIU N H, ZHANG X J, XU Y J, et al. Study on interior ballistic performance of cylindrical compressed air catapult launch system[J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 79-85 (in Chinese). | |
39 | 范奥博. 基于压缩空气弹射的单兵筒式武器研究[D]. 郑州: 郑州大学, 2019. |
FAN A B. Research on individual tube-shape weapon based on compressed air ejection [D].Zhengzhou: Zhengzhou University, 2019 (in Chinese). | |
40 | 何大力. 单兵压缩空气式无人机弹射器的研究[D]. 沈阳: 沈阳理工大学, 2023. |
HE D L. Research on individual soldier compressed air UAV catapult[D]. Shenyang: Shenyang Ligong University, 2023 (in Chinese). | |
41 | 张奉林, 董轶昊, 辛建社, 等. 基于粒子群的小型无人机低过载压缩空气发射参数选择和优化方法研究[J/OL]. 兵工学报, 2024, 1-16. |
ZHANG F L, DONG Y H, XIN J S, et al. Research on parameter selection and optimization method of low overload compressed air emission for small UAV based on particle swarm[J/OL]. Journal of military Industry, 2024pr 1-16 (in Chinese). | |
42 | 李德庚, 周明, 黄迟, 等. 无人机气压弹射起飞动力学仿真分析[J]. 机械工程师, 2020(12): 96-99. |
LI D G, ZHOU M, HUANG C, et al. Dynamic simulation and analysis on pneumatic catapult-assisted take-off of UAV[J]. Mechanical Engineer, 2020(12): 96-99 (in Chinese). | |
43 | LIU X L, XIA C N, MA S G. The modeling and simulation of UAV pneumatic launch system[J]. Applied Mechanics and Materials, 2013, 299: 27-30. |
44 | SIDDIQUI B A, RAHMAN H U, KUMAR C, et al. Computer aided modeling and simulation of pneumatic U. A.V. catapult mechanism[C]∥7th International Mechanical Engineering Congress, 2017. |
45 | ZHANG Z, PENG Y, WEI X, et al. Research on parameter matching characteristics of pneumatic launch systems based on co-simulation[J]. The Aeronautical Journal, 2022, 126(1296): 381-400. |
46 | JASTRZ?BSKI G, U?ANOWICZ L. Estimating the useful energy of a launcher’s pneumatic launch system UAV[J]. Energies, 2022, 15(22): 8424. |
47 | 张钊. 气动弹射系统设计与批量化弹射方案研究[D]. 南京: 南京航空航天大学, 2020. |
ZHANG Z. Design of penumatic lanch system and research on batch lanch scheme of UAV [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). | |
48 | 孙卫杰. 某型固定翼无人机气动弹射系统性能研究[D]. 重庆: 重庆大学, 2022. |
SUN W J. Research on the performance of pneumatic catapult system of a fixed-wing UAV[D]. Chongqing: Chongqing University, 2022 (in Chinese). | |
49 | 陈尚成, 冯文正, 姜涛, 等. 无人机水下发射试验系统弹射性能的仿真研究[J]. 机床与液压, 2023, 51(16): 172-177. |
CHEN S C, FENG W Z, JIANG T, et al. Simulation research on ejection performance of UAV underwater launch test system[J]. Machine Tool & Hydraulics, 2023, 51(16): 172-177 (in Chinese). | |
50 | 杨风波, 马大为, 杨帆, 等. 高压弹射装置内弹道建模与计算[J]. 兵工学报, 2013, 34(5): 527-534. |
YANG F B, MA D W, YANG F, et al. Interior ballistics modeling and calculation of high-pressure ejection device[J]. Acta Armamentarii, 2013, 34(5): 527-534 (in Chinese). | |
51 | REN J, ZHONG J L, YAO L, et al. Experimental investigation and theoretical modelling of a high-pressure pneumatic catapult considering dynamic leakage and convection[J]. Entropy, 2020, 22(9): 1010. |
52 | PENG Z, XU Q, YANG C H, et al. Simulation and experimental investigation of high-pressure pneumatic pilot-driven on/off valve with high transient performances for compressed air ejection[J]. Flow Measurement and Instrumentation, 2023, 94: 102466. |
53 | LI C L, WEN J, WANG S M, et al. Thermodynamic analysis on rapid pressurization of supercritical CO2 for pneumatic launch performance[J]. Journal of CO2 Utilization, 2021, 53: 101710. |
54 | 文键, 李超龙, 王悠悠, 等. CO2用于气动弹射的可行性分析[J]. 宇航学报, 2021, 42(10): 1335-1342. |
WEN J, LI C L, WANG Y Y, et al. Feasibility analysis of CO2 used in pneumatic catapult[J]. Journal of Astronautics, 2021, 42(10): 1335-1342 (in Chinese). | |
55 | YAO H X, WEI X Z, YE H. Supercritical carbon dioxide as a new working medium for pneumatic launch: A theoretical study[J]. Defence Technology, 2021, 17(4): 1296-1306. |
56 | WANG J Q, LI T, ZHANG Z X, et al. Effect of valve on ballistic performance in supercritical CO2 pneumatic launch[J]. Journal of CO2 Utilization, 2023, 75: 102580. |
57 | 赵振, 姜毅, 刘相新, 等. 基于粒子法的柔性气缸导弹弹射数值仿真[J]. 兵工学报, 2022, 43(3): 533-541. |
ZHAO Z, JIANG Y, LIU X X, et al. Numerical simulation of ejecting a missile from missile ejection system with flexible cylinder based on corpuscular method[J]. Acta Armamentarii, 2022, 43(3): 533-541 (in Chinese). | |
58 | 王志富, 姚术健, 鲁寨军, 等. 四氟乙烷弹射无人机的试验及仿真研究[J/OL]. 航空学报, 2024, 1-12. |
WANG Z F, YAO S J, LU Z J, et al. Experimental and simulation study of tetrafluoroethane ejection UAV[J/OL]. Acta Aeronautica et Astronautica Sinica, 2024, 1-12. | |
59 | 严松, 姜毅, 邓月光, 等. 柔性气囊弹射系统动力学特性研究[J]. 振动与冲击, 2024, 43(3): 247-254. |
YAN S, JIANG Y, DENG Y G, et al. Dynamic characteristics of flexible airbag ejection system[J]. Journal of Vibration and Shock, 2024, 43(3): 247-254 (in Chinese). | |
60 | YE J J, ZHAO Z H, ZHENG J Y, et al. Transient flow characteristic of high-pressure hydrogen gas in check valve during the opening process[J]. Energies, 2020, 13(16): 4222. |
61 | YE J J, CUI J X, HUA Z L, et al. Study on the high-pressure hydrogen gas flow characteristics of the needle valve with different spool shapes[J]. International Journal of Hydrogen Energy, 2023, 48(30): 11370-11381. |
62 | 黄国勤, 罗莎祁, 于今. 小型无人机气动肌腱式弹射系统动态仿真与优化[J]. 中国机械工程, 2019, 30(4): 448-454. |
HUANG G Q, LUO S Q, YU J. Dynamic simulation and optimization of pneumatic tendon ejection systems for small UAVs[J]. China Mechanical Engineering, 2019, 30(4): 448-454 (in Chinese). | |
63 | 李士军, 汪长波, 杨巍, 等. 楔形轨道气压弹射装置轨道加速段设计方法研究[J]. 南京理工大学学报(自然科学版), 2020, 44(5): 517-523. |
LI S J, WANG C B, YANG W, et al. Design method of acceleration section track in pneumatic ejection device with wedge track[J]. Journal of Nanjing University of Science and Technology, 2020, 44(5): 517-523 (in Chinese). | |
64 | 杨宝生, 姜毅, 苏政宇, 等. 通用化柔性气缸弹射研究[J]. 弹箭与制导学报, 2023, 43(1): 70-76. |
YANG B S, JIANG Y, SU Z Y, et al. Research on generalised flexible cylinder ejection[J]. Journal of Bullet and Guidance,2023,43(1):70-76 (in Chinese). | |
65 | 杨宝生, 姜毅, 杨哩娜. 基于粒子法的可变边界柔性气缸弹射研究[J]. 振动与冲击, 2023, 42(10): 43-50, 154. |
YANG B S, JIANG Y, YANG L N. Research on flexible cylinder ejection with variable boundary based on corpuscular method?[J]. Journal of Vibration and Shock, 2023, 42(10): 43-50, 154 (in Chinese). | |
66 | 罗江雪, 魏小辉, 张钊. 基于Ansys Workbench的某弹射架风振分析[J]. 航空计算技术, 2020, 50(6): 27-29, 33. |
LUO J X, WEI X H, ZHANG Z. Random vibration analysis of an UAV launcher under wind load by ansys workbench[J]. Aeronautical Computing Technique, 2020, 50(6): 27-29, 33 (in Chinese). | |
67 | 刘夏. 压缩空气弹射系统实验与仿真研究[D]. 镇江: 江苏大学, 2023. |
LIU X. Experimental and simulation research on compressed air ejection system[D]. Zhenjiang: Jiangsu University, 2023 (in Chinese). | |
68 | 徐张宝. 高压气动弹射过程控制研究[D]. 南京: 南京理工大学, 2018. |
XU Z B. Research on the control of high-pressure pneumatic ejection process [D].Nanjing: Nanjing University of Science and Technology, 2018 (in Chinese). | |
69 | 付永领, 范殿梁, 荆慧强. 基于组态软件的气动弹射试验测控系统设计[J]. 液压与气动, 2013(2): 39-44. |
FU Y L, FAN D L, JING H Q. Measuring and control system design of pneumatic catapult experiment by configuration software[J]. Chinese Hydraulics & Pneumatics, 2013(2): 39-44 (in Chinese). | |
70 | 王涛, 廖振强, 吴佳林. 机载悬挂发射倾角控制系统的建模与仿真[J]. 南京理工大学学报(自然科学版), 2007, 31(3): 288-291. |
WANG T, LIAO Z Q, WU J L. Modeling and simulation of airborne suspending ejecting obliquity control system[J]. Journal of Nanjing University of Science and Technology, 2007, 31(3): 288-291 (in Chinese). | |
71 | 杨寒, 王虹玥, 张家仙. 弹射器发展综述[C]∥中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会, 2017. |
YANG H, WANG H Y, ZHANG J X. Overview of catapult development[C]∥The 38th Technical Exchange Meeting of China Aerospace Third Professional Information Network and the second Aerospace Power Federation, 2017 (in Chinese). | |
72 | 《世界无人系统大全》编写组. 世界无人机大全[M]. 北京: 航空工业出版社, 2004. |
Writing Group of the World Collection of UAVs. The world collection of UAVs[M]. Beijing: Aviation Industry Press, 2004 (in Chinese). | |
73 | QINETIQ[EB/OL]. [2023-12-20].. |
74 | THREOD SYSTEMS[EB/OL].[2023-12-20].. |
75 | Eli[EB/OL]. [2023-12-20].. |
76 | REHMAN H U, SIDDIQUI B A, KUMAR C R, et al. Design optimization, manufacturing and testing of pneumatic catapult for UAV[C]∥Sixth International Conference on Aerospace Science & Engineering (ICASE),2019. |
77 | ROBONIC [EB/OL]. [2023-12-20]. |
/
〈 |
|
〉 |