ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Research progress on uncertainty effect of compressor blade machining deviation
Received date: 2024-03-14
Revised date: 2024-04-16
Accepted date: 2024-04-26
Online published: 2024-05-08
Supported by
National Science and Technology Major Project of China(J2019-II-0016-0037);National Natural Science Foundation of China(52175436)
The complex three-dimensional configuration and thin-walled structure of compressor blades lead to great difficulty in their manufacturing, and uncertainty of blade geometric deviation is very prominent in the machining process. As the aerodynamic loading of the compressor continues to rise and the geometric size continues to decrease, its working environment and internal flow characteristics become worse and more complex. The harsh working environment amplifies the influence of machining uncertainty. This leads to the high dispersion of the aerodynamic performance for the same batch of compressors and the frequent occurrence of severe performance degradation in service, resulting in substandard performance and even failure problems. In recent years, a lot of research work has been carried out on uncertainty quantification of compressor blade machining deviation at home and abroad. In this paper, the research progress in this field is reviewed in terms of geometric modeling, probabilistic model characterization, uncertainty quantification method, and uncertainty effect. Finally, the key problems and research prospects of uncertainty quantification on compressor blade machining deviation are summarized.
Limin GAO , Haohao WANG , Weina HUANG , Qiusheng LUO , Ruiyu LI , Guang YANG , Yue DAN , Chi MA , Baohai WU , Jiaqi LUO . Research progress on uncertainty effect of compressor blade machining deviation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(19) : 630386 -630386 . DOI: 10.7527/S1000-6893.2024.30386
1 | 曹传军, 刘天一, 朱伟, 等. 民用大涵道比涡扇发动机高压压气机技术进展[J]. 航空学报, 2023, 44(12): 1-18. |
CAO C J, LIU T Y, ZHU W, et al. Technology development in high pressure compressor of civil high bypass-ratio turbofan engine[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(12): 1-18 (in Chinese). | |
2 | ROBERTS W B. Axial compressor performance restoration by blade profile control[R]. New York: ASME, 1984. |
3 | BAMMERT K, SANDSTEDE H. Influences of manufacturing tolerances and surface roughness of blades on the performance of turbines[J]. Journal of Engineering for Power, 1976, 98(1): 29-36. |
4 | BAMMERT K, STOBBE H. Results of experiments for determining the influence of blade profile changes and manufacturing tolerances on the efficiency, the enthalpy drop, and the mass flow of multi-stage axial turbines[R]. New York: ASME, 2015. |
5 | MARSON E. Effect of manufacturing deviations on performance of axial flow compressor blading[R]. New York: ASME, 2015. |
6 | ROELKE R J, HAAS J E. The effect of rotor blade thickness and surface finish on the performance of a small axial flow turbine[J]. Journal of Engineering for Power, 1983, 105(2): 377-382. |
7 | SUDER K L, CHIMA R V, STRAZISAR A J, et al. The effect of adding roughness and thickness to a transonic axial compressor rotor[J]. Journal of Turbomachinery, 1995, 117(4): 491-505. |
8 | ROBERTS W B, ARMIN A, KASSASEYA G, et al. The effect of variable chord length on transonic axial rotor performance[J]. Journal of Turbomachinery, 2002, 124(3): 351-357. |
9 | WU C Y. Arbitrary surface flank milling and flank SAM in the design and manufacturing of jet engine fan and compressor airfoils[R]. New York: ASME, 2013. |
10 | 张伟昊, 邹正平, 李维, 等. 叶型偏差对涡轮性能影响的非定常数值模拟研究[J]. 航空学报, 2010, 31(11): 2130-2138. |
ZHANG W H, ZOU Z P, LI W, et al. Unsteady numerical simulation investigation of effect of blade profile deviation on turbine performance[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(11): 2130-2138 (in Chinese). | |
11 | 张伟昊, 邹正平, 刘火星, 等. 叶型偏差对整机环境中涡轮性能的影响[J]. 工程热物理学报, 2010, 31(11): 1830-1834. |
ZHANG W H, ZOU Z P, LIU H X, et al. Effect of profile deviation on turbine performance in whole engine environment[J]. Journal of Engineering Thermophysics, 2010, 31(11): 1830-1834 (in Chinese). | |
12 | 高丽敏, 蔡宇桐, 曾瑞慧, 等. 叶片加工误差对压气机叶栅气动性能的影响[J]. 推进技术, 2017, 38(3): 525-531. |
GAO L M, CAI Y T, ZENG R H, et al. Effects of blade machining error on compressor cascade aerodynamic performance[J]. Journal of Propulsion Technology, 2017, 38(3): 525-531 (in Chinese). | |
13 | 高丽敏, 蔡宇桐, 郝燕平, 等. 加工误差对压气机叶片气动性能影响试验研究[J]. 推进技术, 2017, 38(8): 1761-1766. |
GAO L M, CAI Y T, HAO Y P, et al. Experimental investigation on aerodynamic performance of compressor blade considering manufacturing error[J]. Journal of Propulsion Technology, 2017, 38(8): 1761-1766 (in Chinese). | |
14 | 但玥, 王浩浩, 高丽敏, 等. 扭转度误差对跨声速压气机叶片性能的影响[J]. 推进技术, 2023, 44(10): 84-91. |
DAN Y, WANG H H, GAO L M, et al. Effects of twist angle error on transonic compressor blades performance[J]. Journal of Propulsion Technology, 2023, 44(10): 84-91 (in Chinese). | |
15 | 高丽敏, 杨光, 王浩浩, 等. 波纹对高亚音叶型气动敏感位置和宽度研究[J]. 工程热物理学报, 2023, 44(1): 78-85. |
GAO L M, YANG G, WANG H H, et al. Research on the aerodynamic sensitive position and width of waviness on the high subsonic profile[J]. Journal of Engineering Thermophysics, 2023, 44(1): 78-85 (in Chinese). | |
16 | 高丽敏, 杨光, 王浩浩, 等. 波纹度偏差对高负荷压气机叶型的影响[J]. 西安交通大学学报, 2023, 57(3): 117-128. |
GAO L M, YANG G, WANG H H, et al. Effect of waviness deviation on the blade profile of the high-load compressor[J]. Journal of Xi’an Jiaotong University, 2023, 57(3): 117-128 (in Chinese). | |
17 | 李萍. 叶片加工误差及数据传递对压气机气动性能的影响[D]. 西安: 西北工业大学, 2015. |
LI P. Influence of blade machining error and data transfer on aerodynamic performance of compressor[D].Xi’an: Northwestern Polytechnical University, 2015 (in Chinese). | |
18 | 郑似玉, 滕金芳, 羌晓青. 叶片加工超差对高压压气机性能影响和敏感性分析[J]. 机械工程学报, 2018, 54(2): 216-224. |
ZHENG S Y, TENG J F, QIANG X Q. Sensitivity analysis of manufacturing variability on high-pressure compressor performance[J]. Journal of Mechanical Engineering, 2018, 54(2): 216-224 (in Chinese). | |
19 | 庄皓琬, 滕金芳, 朱铭敏, 等. 考虑加工公差的叶片对压气机气动性能的影响[J]. 上海交通大学学报, 2020, 54(9): 935-942. |
ZHUANG H W, TENG J F, ZHU M M, et al. Impacts of blades considering manufacturing tolerances on aerodynamic performance of compressor[J]. Journal of Shanghai Jiao Tong University, 2020, 54(9): 935-942 (in Chinese). | |
20 | 刘佳鑫, 于贤君, 孟德君, 等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报, 2021, 42(2): 342-358. |
LIU J X, YU X J, MENG D J, et al. State and effect of manufacture deviations of compressor blade in high-pressure compressor outlet stage[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 342-358 (in Chinese). | |
21 | 于贤君, 李明志, 安广丰, 等. 高压压气机出口级叶型加工偏差影响的相关性分析[J]. 工程热物理学报, 2022, 43(4): 929-938. |
YU X J, LI M Z, AN G F, et al. Correlation analysis on the influence of manufacture deviation for the compressor blade airfoils of a high-pressure compressor outlet stage[J]. Journal of Engineering Thermophysics, 2022, 43(4): 929-938 (in Chinese). | |
22 | 程超, 吴宝海, 郑海, 等. 叶片加工误差对压气机性能的影响[J]. 航空学报, 2020, 41(2): 23-33. |
CHENG C, WU B H, ZHENG H, et al. Effect of blade machining errors on compressor performance[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 23-33 (in Chinese). | |
23 | JU Y P. A dimension-reduction metamodeling approach to simulation-based uncertainty quantification problems with high dimensionalities[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(1): 43-62. |
24 | 耿少娟, 张小玉, 丁林超, 等. 转子叶片加工误差对1.5级跨声速压气机气动性能的影响[J]. 推进技术, 2021, 42(1): 139-148. |
GENG S J, ZHANG X Y, DING L C, et al. Effects of rotor blade manufacturing variability on 1.5 stage transonic compressor aerodynamic performance[J]. Journal of Propulsion Technology, 2021, 42(1): 139-148 (in Chinese). | |
25 | 吴东, 黄萍, 姚若鹏, 等. 叶型加工中特殊前缘形状试验研究[J]. 风机技术, 2020, 62(4): 29-35. |
WU D, HUANG P, YAO R P, et al. Experimental investigation of special leading edge shapes in blade processing[J]. Chinese Journal of Turbomachinery, 2020, 62(4): 29-35 (in Chinese). | |
26 | GARZON V E, DARMOFAL D L. Impact of geometric variability on axial compressor performance[J]. Journal of Turbomachinery, 2003, 125(4): 692-703. |
27 | GARZON V E. Probabilistic aerothermal design of compressor airfoils[D]. Cambridge: Massachusetts Institute of Technology, 2003. |
28 | ZANG T A, HEMSCH M J, HILBURGER M W, et al. Needs and opportunities for uncertainty‐based multidisciplinary design methods for aerospace vehicles[R]. Washington, D.C.: NASA, 2002. |
29 | JONES S R, CARLEY S, HARRISON M. An introduction to power and sample size estimation[J]. Emergency Medicine Journal: EMJ, 2003, 20(5): 453-458. |
30 | HIRSCH C, WUNSCH D, SZUMBARSKI J, et al. Uncertainty management for robust industrial design in aeronautics[M]. Cham: Springer, 2019. |
31 | VISWANATHAN G M, FULCO U L, LYRA M L, et al. The origin of fat-tailed distributions in financial time series[J]. Physica A: Statistical Mechanics and Its Applications, 2003, 329(1-2): 273-280. |
32 | MéTIVIER D, VUFFRAY M, MISRA S. Efficient polynomial chaos expansion for uncertainty quantification in power systems[J]. Electric Power Systems Research, 2020, 189: 106791. |
33 | GOPINATHRAO N P, BAGSHAW D, MABILAT C, et al. Non-deterministic CFD simulation of a transonic compressor rotor[R]. New York: ASME, 2009. |
34 | WANG J Y, ZHENG X Q. Review of geometric uncertainty quantification in gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2020, 142(7): 070801. |
35 | GAO L M, MA C, CAI M, et al. Influence of uncertain inflow conditions on a subsonic compressor cascade based on wind tunnel experiment[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(15): 8285-8299. |
36 | HUANG M, LI Z G, LI J, et al. Efficient uncertainty quantification and sensitivity analysis on the aerothermal performance of turbine blade squealer tip[J]. Journal of Turbomachinery, 2022, 144(5): 051014. |
37 | PANIZZA A, RUBINO D T, TAPINASSI L. Efficient uncertainty quantification of centrifugal compressor performance using polynomial chaos[R]. New York: ASME, 2014. |
38 | Contreras J, Crespo J. Quantitative evaluation and optimization of feeding-back previous cycles information for computational fluid dynamics periodic convergence[J]. Journal of Turbomachinery, 2021, 143(10): 101008. |
39 | 郑新前, 王钧莹, 黄维娜, 等. 航空发动机不确定性设计体系探讨[J]. 航空学报, 2023, 44(7): 1-18. |
ZHENG X Q, WANG J Y, HUANG W N, et al. Uncertainty-based design system for aeroengines[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 1-18 (in Chinese). | |
40 | 蔡宇桐, 高丽敏, 马驰, 等. 基于NIPC的压气机叶片加工误差不确定性分析[J]. 工程热物理学报, 2017, 38(3): 490-497. |
CAI Y T, GAO L M, MA C, et al. Uncertainty quantification on compressor blade considering manufacturing error based on NIPC method[J]. Journal of Engineering Thermophysics, 2017, 38(3): 490-497 (in Chinese). | |
41 | GUO Z T, CHU W L, ZHANG H G, et al. Statistical evaluation of stability margin of a multi-stage compressor with geometric variability using adaptive polynomial chaos-Kriging model[J]. Physics of Fluids, 2023, 35(7): 076114. |
42 | WANG X J, ZOU Z P. Uncertainty analysis of impact of geometric variations on turbine blade performance[J]. Energy, 2019, 176: 67-80. |
43 | LUO J Q, LIU F. Performance impact of manufacturing tolerances for a turbine blade using second order sensitivities[R]. New York: ASME, 2018. |
44 | JU Y P, LIU Y M, JIANG W, et al. Aerodynamic analysis and design optimization of a centrifugal compressor impeller considering realistic manufacturing uncertainties[J]. Aerospace Science and Technology, 2021, 115: 106787. |
45 | 王林, 潘旭, 杨锟. 考虑高压涡轮性能非确定的航空发动机鲁棒设计[J]. 航空动力学报, 2024, 39(4): 294-303. |
WANG L, PAN X, YANG K. Robust optimization in aero-engine design considering uncertainty of high-pressure turbine performance[J]. Journal of Aerospace Power, 2024, 39(4): 294-303 (in Chinese). | |
46 | HE X, ZHAO F Z, VAHDATI M. Uncertainty quantification of spalart-allmaras turbulence model coefficients for compressor stall[R]. New York: ASME, 2020. |
47 | ZHANG Q, XU S R, YU X J, et al. Nonlinear uncertainty quantification of the impact of geometric variability on compressor performance using an adjoint method[J]. Chinese Journal of Aeronautics, 2022, 35(2): 17-21. |
48 | 中国航空工业总公司. 叶片叶型的标志、公差与叶身表面粗糙度: [S]. 北京: 中国航空工业总公司, 1999. |
Aviation Industry Corporation of China, Ltd. Blade profile marking, tolerance and blade surface roughness: [S]. Beijing: Aviation Industry Corporation of China, 1999 (in Chinese). | |
49 | 蔡宇桐. 压气机叶片加工误差影响研究及叶型稳健性设计[D]. 西安: 西北工业大学, 2017. |
CAI Y T. Investigation on the aerodynamic performance of compressor blade considering machining error and robust design of airfoil[D]. Xi’an: Northwestern Polytechnical University, 2017 (in Chinese). | |
50 | 高丽敏, 王浩浩, 杨光, 等. 关于叶片前缘加工缺陷及气动合格性的探讨[J]. 推进技术, 2023, 44(1): 76-85. |
GAO L M, WANG H H, YANG G, et al. Discussion on machining defects of blade leading edge and aerodynamic qualification[J]. Journal of Propulsion Technology, 2023, 44(1): 76-85 (in Chinese). | |
51 | LANGE A, VOGELER K, GüMMER V, et al. Introduction of a parameter based compressor blade model for considering measured geometry uncertainties in numerical simulation[R]. New York: ASME, 2009. |
52 | JAVED A, PECNIK R, VAN BUIJTENEN J P. Optimization of a centrifugal compressor impeller for robustness to manufacturing uncertainties[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(11): 112101. |
53 | WANG J Y, WANG B T, YANG H L, et al. Compressor geometric uncertainty quantification under conditions from near choke to near stall[J]. Chinese Journal of Aeronautics, 2023, 36(3): 16-29. |
54 | LI M Z, YU X J, MENG D J, et al. A new approach for deviation modeling in compressors: Sensitivity-correlated principal component analysis[J]. Aerospace, 2023, 10(5): 491. |
55 | SCHNELL R, LENGYEL-KAMPMANN T, NICKE E. On the impact of geometric variability on fan aerodynamic performance, unsteady blade row interaction, and its mechanical characteristics[J]. Journal of Turbomachinery, 2014, 136(9): 091005. |
56 | LUO J Q, LIU F. Statistical evaluation of performance impact of manufacturing variability by an adjoint method[J]. Aerospace Science and Technology, 2018, 77: 471-484. |
57 | 颜勇, 祝培源, 宋立明, 等. 基于非平稳高斯过程的叶栅加工误差不确定性量化[J]. 推进技术, 2017, 38(8): 1767-1775. |
YAN Y, ZHU P Y, SONG L M, et al. Uncertainty quantification of cascade manufacturing error based non-stationary Gaussian process[J]. Journal of Propulsion Technology, 2017, 38(8): 1767-1775 (in Chinese). | |
58 | SESHADRI P, SHAHPAR S, CONSTANTINE P, et al. Turbomachinery active subspace performance maps[J]. Journal of Turbomachinery, 2018, 140(4): 041003. |
59 | 马驰. 不确定性量化方法研究及压气机多源不确定性气动性能预测[D]. 西安: 西北工业大学, 2022. |
MA C. Research on uncertainty quantification method and prediction of the aerodynamic performance of compressors caused by multisource uncertainties[D]. Xi’an: Northwestern Polytechnical University, 2022 (in Chinese). | |
60 | LAMB C M. Probabilistic performance-based geometric tolerancing of compressor blades[D]. Cambridge: Massachusetts Institute of Technology, 2005. |
61 | DUFFNER J D. The effects of manufacturing variability on turbine vane performance[D]. Cambridge: Massachusetts Institute of Technology, 2008. |
62 | WUNSCH D, HIRSCH C, NIGRO R, et al. Quantification of combined operational and geometrical uncertainties in turbo-machinery design[R]. New York: ASME, 2015. |
63 | 马驰, 高丽敏, 李瑞宇, 等. 真实运行状态下叶顶间隙尺寸波动对跨声速转子气动性能的影响研究[J]. 推进技术, 2020, 41(9): 1958-1966. |
MA C, GAO L M, LI R Y, et al. Effects of tip clearance size fluctuation in actual operations on aerodynamic performance of a transonic rotor[J]. Journal of Propulsion Technology, 2020, 41(9): 1958-1966 (in Chinese). | |
64 | TANG X Z, WANG Z, XIAO P, et al. Uncertainty quantification based optimization of centrifugal compressor impeller for aerodynamic robustness under stochastic operational conditions[J]. Energy, 2020, 195: 116930. |
65 | ZHENG S Y, TENG J F, WU Y, et al. Impact of nonuniform stagger angle distribution on high-pressure compressor rotor performance[R]. New York: ASME, 2018. |
66 | 姬田园, 楚武利, 张振华, 等. 叶片厚度偏差对转子性能影响的不确定性分析[J/OL]. 航空动力学, (2023-09-04) [2024-03-12]. . |
JI T Y, CHU W L, ZHANG Z H, et al. Uncertainty analysis of impact of blade thickness deviation on rotor performance?[J/OL]. Journal of Aerospace Power, (2023-09-04) [2024-03-12]. (in Chinese). | |
67 | 郑似玉, 滕金芳, 羌晓青. 压气机叶片扭转度加工超差分析与研究[J]. 节能技术, 2017, 35(2): 99-102, 112. |
ZHENG S Y, TENG J F, QIANG X Q. Numerical research of twisted variability on axial compressor performance[J]. Energy Conservation Technology, 2017, 35(2): 99-102, 112 (in Chinese). | |
68 | WANG J Y, YANG H L, ZHOU K, et al. Performance dispersion control of a multistage compressor based on precise identification of critical features[J]. Aerospace Science and Technology, 2022, 129: 107845. |
69 | LANGE A, VOIGT M, VOGELER K, et al. Probabilistic CFD simulation of a high-pressure compressor stage taking manufacturing variability into account[R]. New York: ASME, 2010. |
70 | LANGE A, VOIGT M, VOGELER K, et al. Principal component analysis on 3D scanned compressor blades for probabilistic CFD simulation: AIAA-2012-1762[R]. Reston: AIAA, 2012. |
71 | PANIZZA A, VALENTE R, RUBINO D, et al. Impact of manufacturing variability on the aerodynamic performance of a centrifugal compressor stage with curvilinear blades[R]. New York: ASME, 2016. |
72 | MA C, GAO L M, WANG H H, et al. Influence of leading edge with real manufacturing error on aerodynamic performance of high subsonic compressor cascades[J]. Chinese Journal of Aeronautics, 2021, 34(6): 220-232. |
73 | 王浩浩, 高丽敏, 杨光, 等. 一种鲁棒的数据驱动不确定性量化方法及在压气机叶栅中的应用[J]. 航空学报, 2023, 44(17): 122-134. |
WANG H H, GAO L M, YANG G, et al. Robust data-driven uncertainty quantification method and its application in compressor cascade[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 122-134 (in Chinese). | |
74 | 熊芬芬, 李泽贤, 刘宇, 等. 基于数值模拟的工程设计中参数不确定性表征方法研究综述[J]. 航空学报, 2023, 44(22): 86-117. |
XIONG F F, LI Z X, LIU Y, et al. A review of characterization methods for parameter uncertainty in engineering design based on numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 86-117 (in Chinese). | |
75 | OLADYSHKIN S, CLASS H, HELMIG R, et al. A concept for data-driven uncertainty quantification and its application to carbon dioxide storage in geological formations[J]. Advances in Water Resources, 2011, 34(11): 1508-1518. |
76 | AHLFELD R, BELKOUCHI B, MONTOMOLI F. SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos[J]. Journal of Computational Physics, 2016, 320: 1-16. |
77 | AHLFELD R, MONTOMOLI F. A single formulation for uncertainty propagation in turbomachinery: SAMBA PC[J]. Journal of Turbomachinery, 2017, 139(11): 111007. |
78 | WANG H H, GAO L M, WU B H. Critical sample-size analysis for uncertainty aerodynamic evaluation of compressor blades with stagger-angle errors[J]. Aerospace, 2023, 10(12): 990. |
79 | NAJM H N. Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics[J]. Annual Review of Fluid Mechanics, 2009, 41: 35-52. |
80 | LI Z H, MONTOMOLI F, CASARI N, et al. High-dimensional uncertainty quantification of high-pressure turbine vane based on multifidelity deep neural networks[J]. Journal of Turbomachinery, 2023, 145(11): 111009. |
81 | JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3): 233-260. |
82 | ZAMBONI G, BANKS G, BATHER S. Gradient-based adjoint and design of experiment CFD methodologies to improve the manufacturability of high pressure turbine blades[R]. New York: ASME, 2016. |
83 | XIONG J T, YANG J, MCBEAN I, et al. Statistical evaluation of the performance impact of manufacturing variations for steam turbines[R]. New York: ASME, 2016. |
84 | 罗佳奇, 朱亚路, 刘锋. 基于伴随方法的叶片加工偏差气动灵敏度分析[J]. 工程热物理学报, 2017, 38(3): 498-503. |
LUO J Q, ZHU Y L, LIU F. Aerodynamic sensitivity analysis for manufacturing variations of a turbine blade by an adjoint method[J]. Journal of Engineering Thermophysics, 2017, 38(3): 498-503 (in Chinese). | |
85 | LUO J Q, CHEN Z S, ZHENG Y. A gradient-based method assisted by surrogate model for robust optimization of turbomachinery blades[J]. Chinese Journal of Aeronautics, 2022, 35(10): 1-7. |
86 | ZHANG J S, LI L, DONG X, et al. A discrete adjoint framework coupled with adaptive PCE for robust aerodynamic optimization of turbomachinery under flow uncertainty[J]. Aerospace Science and Technology, 2023, 142: 108592. |
87 | GIEBMANNS A, BACKHAUS J, FREY C, et al. Compressor leading edge sensitivities and analysis with an adjoint flow solver[R]. New York: ASME, 2013. |
88 | XU S R, ZHANG Q, WANG D X, et al. Uncertainty quantification of compressor map using the Monte Carlo approach accelerated by an adjoint-based nonlinear method[J]. Aerospace, 2023, 10(3): 280. |
89 | MOHANAMURALY P, MüLLER J D. An adjoint-assisted multilevel multifidelity method for uncertainty quantification and its application to turbomachinery manufacturing variability[J]. International Journal for Numerical Methods in Engineering, 2021, 122(9): 2179-2204. |
90 | XIA Z H, LUO J Q, LIU F. Performance impact of flow and geometric variations for a turbine blade using an adaptive NIPC method[J]. Aerospace Science and Technology, 2019, 90: 127-139. |
91 | WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 60(4): 897. |
92 | XIU D B, KARNIADAKIS G E. The wiener-askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 24(2): 619-644. |
93 | WITTEVEEN J A S, BIJL H. Modeling arbitrary uncertainties using gram-schmidt polynomial chaos: AIAA-2006-0896[R]. Reston: AIAA, 2006. |
94 | LOEVEN A, BIJL H. The application of the probabilistic collocation method to a transonic axial flow compressor: AIAA-2010-2923[R]. Reston: AIAA, 2010. |
95 | MONTOMOLI F, CARNEVALE M, D’AMMARO A, et al. Uncertainty quantification in computational fluid dynamics and aircraft engines[M]. Cham: Springer International Publishing, 2015. |
96 | GHISU T, SHAHPAR S. Toward affordable uncertainty quantification for industrial problems: Part Ⅱ-turbomachinery application[R]. New York: ASME, 2017. |
97 | WANG X J, DU P C, YAO L C, et al. Uncertainty analysis of measured geometric variations in turbine blades and impact on aerodynamic performance[J]. Chinese Journal of Aeronautics, 2023, 36(6): 140-160. |
98 | TAO Z, GUO Z D, SONG L M, et al. Uncertainty quantification of aero-thermal performance of a blade endwall considering slot geometry deviation and mainstream fluctuation[R]. New York: ASME, 2020. |
99 | GUO Z T, CHU W L, ZHANG H G, et al. Aerodynamic evaluation of cascade flow with actual geometric uncertainties using an adaptive sparse arbitrary polynomial chaos expansion[J]. Physics of Fluids, 2023, 35(3): 036122. |
100 | WU X J, ZHANG W W, SONG S F, et al. Sparse grid-based polynomial chaos expansion for aerodynamics of an airfoil with uncertainties[J]. Chinese Journal of Aeronautics, 2018, 31(5): 997-1011. |
101 | BüRKNER P C, KR?KER I, OLADYSHKIN S, et al. A fully bayesian sparse polynomial chaos expansion approach with joint priors on the coefficients and global selection of terms[J]. Journal of Computational Physics, 2023, 488: 112210. |
102 | SALEHI S, RAISEE M, CERVANTES M J, et al. Efficient uncertainty quantification of stochastic CFD problems using sparse polynomial chaos and compressed sensing[J]. Computers & Fluids, 2017, 154: 296-321. |
103 | MOHAMMADI A, SHIMOYAMA K, KARIMI M S, et al. Efficient uncertainty quantification of CFD problems by combination of proper orthogonal decomposition and compressed sensing[J]. Applied Mathematical Modelling, 2021, 94: 187-225. |
104 | GUO Z T, CHU W L, ZHANG H G. A data-driven non-intrusive polynomial chaos for performance impact of high subsonic compressor cascades with stagger angle and profile errors[J]. Aerospace Science and Technology, 2022, 129: 107802. |
105 | AHLFELD R, MONTOMOLI F, SCALAS E, et al. Uncertainty quantification for fat-tailed probability distributions in aircraft engine simulations[J]. Journal of Propulsion and Power, 2017, 33(4): 881-890. |
106 | OLADYSHKIN S, NOWAK W. Incomplete statistical information limits the utility of high-order polynomial chaos expansions[J]. Reliability Engineering & System Safety, 2018, 169: 137-148. |
107 | GUO L, LIU Y L, ZHOU T. Data-driven polynomial chaos expansions: A weighted least-square approximation[J]. Journal of Computational Physics, 2019, 381: 129-145. |
108 | WANG H H, GAO L M, YANG G, et al. A data-driven robust design optimization method and its application in compressor blade[J]. Physics of Fluids, 2023, 35(6): 066114. |
109 | WANG H H, GAO L M, YANG G, et al. A data-driven polynomial chaos method for uncertainty quantification of a subsonic compressor cascade with stagger angle errors[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2024, 238(4): 591-604. |
110 | GOODHAND M N, MILLER R J, LUNG H W. The impact of geometric variation on compressor two-dimensional incidence range[J]. Journal of Turbomachinery, 2015, 137(2): 021007. |
111 | 杨冠华, 高丽敏, 王浩浩, 等. 基于NURBS的扩压叶栅非对称前缘设计[J]. 航空动力学报, 2021, 36(3): 655-663. |
YANG G H, GAO L M, WANG H H, et al. Asymmetric leading edge design of diffusion cascade based on NURBS[J]. Journal of Aerospace Power, 2021, 36(3): 655-663 (in Chinese). | |
112 | YANG G, GAO L, MA C, et al. Investigation on aerodynamic robustness of compressor blade with asymmetric leading edge[J]. Journal of Applied Fluid Mechanics, 2024, 17(2): 337-351. |
113 | WANG H H, GAO L M, YANG, G, et al. A preconditioner-based data-driven polynomial expansion method: Application to compressor blade with leading edge uncertainty[J]. Journal of Engineering for Gas Turbines and Power, 2024, 146(11): 111004. |
114 | SURIYANARAYANAN V, RENDU Q, VAHDATI M, et al. Effect of manufacturing tolerance in flow past a compressor blade[J]. Journal of Turbomachinery, 2022, 144(4): 041005. |
115 | LU Y Z, GREEN J, STAPELFELDT S C, et al. Effect of geometric variability on running shape and performance of a transonic fan[J]. Journal of Turbomachinery, 2019, 141(10): 101012. |
116 | 姬田园, 楚武利, 张皓光, 等. 基于数据驱动的扭转度偏差影响压气机性能的不确定性量化[J/OL]. 航空学报, (2024-01-05), [2024-03-12]. . |
JI T Y, CHU W L, ZHANG H G, et al. Data-driven-based approach for uncertainty quantification of twist deviation affecting compressor performance[J]. Acta Aeronautica et Astronautica Sinica, (2024-01-05), [2024-03-12]. (in Chinese). | |
117 | 高丽敏, 蔡宇桐, 徐浩亮, 等. 压气机叶片加工误差影响不确定分析[J]. 航空动力学报, 2017, 32(9): 2253-2259. |
GAO L M, CAI Y T, XU H L, et al. Uncertainty analysis of machining error influence of compressor blade[J]. Journal of Aerospace Power, 2017, 32(9): 2253-2259 (in Chinese). | |
118 | MARTINELLI M, DUVIGNEAU R. Comparison of second-order derivatives and metamodel-based monte-carlo approaches to estimate statistics for robust design of a transonic wing: AIAA-2008- 2071[R]. Reston: AIAA, 2008. |
119 | 李焦赞, 高正红. 多目标进化算法和代理模型技术在气动稳健优化设计中的应用[J]. 空气动力学学报, 2012, 30(1): 46-51. |
LI J Z, GAO Z H. The application of multi-objective evolutionary algorithm and surrogate model to aerodynamic robust optimization design[J]. Acta Aerodynamica Sinica, 2012, 30(1): 46-51 (in Chinese). | |
120 | KAMENIK J, VOUTCHKOV I, TOAL D J J, et al. Robust turbine blade optimization in the face of real geometric variations[J]. Journal of Propulsion and Power, 2018, 34(6): 1479-1493. |
121 | LIU Y M, JU Y P, QIN R H, et al. Collaborative robust design optimization of blade geometry and manufacturing tolerance for a transonic centrifugal impeller[J]. Journal of Turbomachinery, 2023, 145(7): 071001. |
122 | GAO L M, MA C, CAI Y T. A robust blade design method based on non-intrusive polynomial chaos considering profile error[J]. Journal of Thermal Science, 2019, 28(5): 875-885. |
/
〈 |
|
〉 |