Electronics and Electrical Engineering and Control

Non-cooperative target pose estimation from monocular images based on lightweight neural network

  • Zi WANG ,
  • Jinghao WANG ,
  • Yang LI ,
  • Zhang LI ,
  • Qifeng YU
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    2.Hunan Provincial Key Laboratory of Image Measurement and Vision Navigation,Changsha 410073,China

Received date: 2024-01-29

  Revised date: 2024-04-07

  Accepted date: 2024-04-26

  Online published: 2024-04-30

Supported by

National Natural Science Foundation of China(12302252);Research Program of National University of Defense Technology(ZK24-31)

Abstract

Estimating the pose of non-cooperative targets from monocular images stands as a pivotal technology for future space missions. Recent advancements in deep neural networks have surpassed traditional methods in pose measurement accuracy. However, these networks often entail a high number of parameters and significant computational complexity. This poses a challenge for deployment in on-orbit applications where real-time measurement is crucial, as computational resources are limited. Reducing the number of network parameters compromises the ability to extract representative features, leading to degraded pose estimation performance. To tackle this problem, we present an approach using lightweight neural networks that maintains high accuracy in pose estimation, which is a task far from trivial. Our solution involves a novel semantic keypoint localization method. We develop a lightweighted neural network model with a mere 1.1 ×106 parameters. To enhance the precision of semantic keypoint localization and subsequent pose estimation, we introduce a heatmap decoding technique that allows for sub-pixel level accuracy, while enabling end-to-end supervision of semantic keypoint localization. Moreover, we develop an auxiliary layer supervised training method to further refine the accuracy of semantic keypoint localization. Experiments on public datasets demonstrate that our method not only achieves the highest pose measurement accuracy among all lightweight models with fewer than 107 parameters, but also sets a new benchmark. Additionally, tests on embedded development boards reveal that our method attains measurement frequencies of 5 Hz and 11 Hz in 10 W and 30 W power modes, respectively.

Cite this article

Zi WANG , Jinghao WANG , Yang LI , Zhang LI , Qifeng YU . Non-cooperative target pose estimation from monocular images based on lightweight neural network[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(22) : 330248 -330248 . DOI: 10.7527/S1000-6893.2024.30248

References

1 王楷, 徐世杰, 黎康, 等. 双视线测量相对导航方法误差分析与编队设计[J]. 航空学报201839(9): 322014.
  WANG K, XU S J, LI K, et al. Error analysis and formation design for double line-of-sight measuring relative navigation method[J]. Acta Aeronautica et Astronautica Sinica201839(9): 322014 (in Chinese).
2 肖余之, 靳永强, 陈欢龙, 等. 在轨服务若干关键技术研究进展[J].上海航天(中英文)202138(3): 85-95.
  XIAO Y Z, JIN Y Q, CHEN H L, et al. Research progress on several key technologies of on-orbit service [J]. Aerospace Shanghai (Chinese & English)202138(3): 85-95 (in Chinese).
3 于浛, 魏喜庆, 宋申民, 等. 基于自适应容积卡尔曼滤波的非合作航天器相对运动估计[J]. 航空学报201435(8): 2251-2260.
  YU H, WEI X Q, SONG S M, et al. Relative motion estimation of non-cooperative spacecraft based on adaptive CKF[J]. Acta Aeronautica et Astronautica Sinica201435(8): 2251-2260 (in Chinese).
4 OPROMOLLA R, FASANO G, RUFINO G, et al. A review of cooperative and uncooperative spacecraft pose determination techniques for close-proximity operations[J]. Progress in Aerospace Sciences201793: 53-72.
5 KISANTAL M, SHARMA S, PARK T H, et al. Satellite pose estimation challenge: dataset, competition design, and results[J]. IEEE Transactions on Aerospace and Electronic Systems202056(5): 4083-4098.
6 PARK T H, M?RTENS M, JAWAID M, et al. Satellite pose estimation competition 2021: results and analyses[J]. Acta Astronautica2023204: 640-665.
7 WANG Z, CHEN M L, GUO Y L, et al. Bridging the domain gap in satellite pose estimation: a self-training approach based on geometrical constraints[J]. IEEE Transactions on Aerospace and Electronic Systems202460(3): 2500-2514.
8 CHEN B, CAO J W, PARRA A, et al. Satellite pose estimation with deep landmark regression and nonlinear pose refinement[C]∥ 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway: IEEE Press, 2019: 2816-2824.
9 LEPETIT V, MORENO-NOGUER F, FUA P. EPnP: an accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision200981(2): 155-166.
10 BECHINI M, GU G, LUNGHI P, et al. Robust spacecraft relative pose estimation via CNN-aided line segments detection in monocular images[J]. Acta Astronautica2024215: 20-43.
11 PROEN?A P F, GAO Y. Deep learning for spacecraft pose estimation from photorealistic rendering[C]?∥ 2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 6007-6013.
12 SHARMA S, D’AMICO S. Neural network-based pose estimation for noncooperative spacecraft rendezvous[J]. IEEE Transactions on Aerospace and Electronic Systems202056(6): 4638-4658.
13 PARK T H, SHARMA S, D’AMICO S. Towards robust learning-based pose estimation of noncooperative spacecraft[C]?∥ 2019 AAS/AIAA Astrodynamics Specialist Conference. 2019.
14 SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]?∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 4510-4520.
15 ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 6848-6856.
16 褚晶辉, 李梦, 吕卫. 基于深度学习的自适应动态滤波器剪枝方法[J]. 激光与光电子学进展202259(24): 2415003.
  CHU J H, LI M, Lü W. Adaptive dynamic filter pruning approach based on deep learning[J]. Laser & Optoelectronics Progress202259(24): 2415003 (in Chinese).
17 黄赟, 张帆, 郭威, 等. 一种基于数据标准差的卷积神经网络量化方法[J]. 电子学报202351(3): 639-647.
  HUANG Y, ZHANG F, GUO W, et al. A quantification method of convolutional neural network based on data standard deviation[J]. Acta Electronica Sinica202351(3): 639-647 (in Chinese).
18 王梓, 孙晓亮, 李璋, 等 .基于Transformer模型的卫星单目位姿估计方法[J].航空学报202243(1): 325298.
  WANG Z, SUN X L, LI Z, et al. Transformer based monocular satellite pose estimation[J]. Acta Aeronautica et Astronautica Sinica202243(1): 325298 (in Chinese).
19 WANG Z, ZHANG Z, SUN X L, et al. Revisiting monocular satellite pose estimation with transformer[J]. IEEE Transactions on Aerospace and Electronic Systems202258(5): 4279-4294.
20 POSSO J, BOIS G, SAVARIA Y. Mobile-URSONet: an embeddable neural network for onboard spacecraft pose estimation[C]∥ 2022 IEEE International Symposium on Circuits and Systems (ISCAS). Piscataway: IEEE Press, 2022: 794-798.
21 BLACK K, SHANKAR S, FONSEKA D, et al. Real-time, flight-ready, non-cooperative spacecraft pose estimation using monocular imagery[C]?∥ 31st AAS/AIAA Space Flight Mechanics Meeting, 2021.
22 LOTTI A, MODENINI D, TORTORA P, et al. Deep learning for real-time satellite pose estimation on tensor processing units[J]. Journal of Spacecraft and Rockets202360(3): 1034-1038.
23 于起峰, 尚洋. 摄像测量学原理与应用研究[M]. 北京: 科学出版社, 2009: 23-32.
  YU Q F, SHANG Y. Videometrics: principles and researches[M]. Beijing: Science Press, 2009: 23-32 (in Chinese).
24 FISCHLER M. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM198124(6): 381-395.
25 YU C Q, XIAO B, GAO C X, et al. Lite-HRNet: a lightweight high-resolution network[C]?∥ 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 10435-10445.
26 WANG X Y, BO L F, LI F X. Adaptive wing loss for robust face alignment via heatmap regression[C]?∥ 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 6970-6980.
Outlines

/