Reviews

Research progress on flow control of propeller for low dynamic near⁃space vehicle

  • Wenbiao GAN ,
  • Junjie ZHUANG ,
  • Jinwu XIANG ,
  • Zhenjie ZUO ,
  • Zhijie ZHAO ,
  • Zhenbing LUO
Expand
  • 1.Research Institute of Unmanned System,Beihang University,Beijing 100191,China
    2.School of Aeronautic Science and Engineering,Beihang University,Beijing 100191,China
    3.College of Aerospace Engineering,National University of Defense Technology,Changsha 410073,China

Received date: 2024-01-02

  Revised date: 2024-02-18

  Accepted date: 2024-04-16

  Online published: 2024-04-30

Supported by

National Natural Science Foundation of China(U2141252);Aeronautical Science Foundation of China(2019ZA051001)

Abstract

The low dynamic near-space vehicle, such as high-altitude solar-powered Unmanned Aerial Vehicle (UAV) and stratospheric airship, has the potential for sustained flight. It has important application values in military and civilian areas, such as continuous wide area early warning and reconnaissance, monitoring and observation, emergency response, and disaster relief. At present, due to the constraints of high-altitude rarefied atmosphere conditions and the energy consumption demand of variable altitude overnight, the low dynamic near-space vehicle faces to the problem of insufficient multi-point working efficiency of low Reynolds propellers. In recent years, with the reduction of energy consumption and improvement of reliability of control components, the potential of application of flow control in improving propeller efficiency has become prominent. This paper summarizes the research progress of flow control technologies for propellers of low dynamic near-space vehicles. Firstly, the aerodynamic analysis technology of low Reynolds propellers for near-space low dynamic vehicles is reviewed. The aerodynamic analysis basis required for propeller flow control is defined. Secondly, based on the principles of variable pitch and active/passive flow control, the research status of propeller passive control is analyzed, such as trailing edge deformation control and blade tip winglet control. Thirdly, the progress of plasma jet flow control of propeller is introduced. The research status and limitations of co-flow jet flow control are described, and then the current situation and potential of dual synthetic jet flow control are analyzed. Finally, the scientific problems of flow control for the low Reynolds propeller are summarized, and the feasible research directions are put forward.

Cite this article

Wenbiao GAN , Junjie ZHUANG , Jinwu XIANG , Zhenjie ZUO , Zhijie ZHAO , Zhenbing LUO . Research progress on flow control of propeller for low dynamic near⁃space vehicle[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(17) : 530086 -530086 . DOI: 10.7527/S1000-6893.2024.30086

References

1 黄伟, 陈逖, 罗世彬, 等. 临近空间飞行器研究现状分析[J]. 飞航导弹2007(10): 28-31.
  HUANG W, CHEN T, LUO S B, et al. Analysis of research status of near-space vehicles[J]. Winged Missiles Journal2007(10): 28-31 (in Chinese).
2 薛永江, 李体方. 临近空间飞行器发展及关键技术分析[J]. 飞航导弹2011(2): 32-36.
  XUE Y J, LI T F. Development of near spacecraft and analysis of its key technologies[J]. Aerodynamic Missile Journal2011(2): 32-36 (in Chinese).
3 黄宛宁, 张晓军, 李智斌, 等. 临近空间科学技术的发展现状及应用前景[J]. 科技导报201937(21): 46-62.
  HUANG W N, ZHANG X J, LI Z B, et al. Development status and application prospect of near space science and technology[J]. Science & Technology Review201937(21): 46-62 (in Chinese).
4 杜绵银, 陈培, 李广佳, 等. 临近空间低速飞行器螺旋桨技术[J]. 飞航导弹2011(7): 15-19, 28.
  DU M Y, CHEN P, LI G J, et al. Propeller technology of near-space low-speed aircraft[J]. Aerodynamic Missile Journal2011(7): 15-19, 28 (in Chinese).
5 刘沛清, 马利川, 段中喆, 等. 平流层飞艇螺旋桨相似准则分析与验证[J]. 北京航空航天大学学报201238(7): 957-961.
  LIU P Q, MA L C, DUAN Z Z, et al. Study and verification on similarity theory for propellers of stratospheric airships[J]. Journal of Beijing University of Aeronautics and Astronautics201238(7): 957-961 (in Chinese).
6 刘沛清, 马蓉, 段中喆, 等. 平流层飞艇螺旋桨地面风洞试验[J]. 航空动力学报201126(8): 1775-1781.
  LIU P Q, MA R, DUAN Z Z, et al. Ground wind tunnel test study of the propeller of stratospheric airships[J]. Journal of Aerospace Power201126(8): 1775-1781 (in Chinese).
7 王豪杰, 李杰, 付炜嘉, 等. 无人机螺旋桨气动力设计[J]. 应用力学学报201229(4): 380-385, 483.
  WANG H J, LI J, FU W J, et al. Aerodynamic design of propeller for unmanned aerial vehicles[J]. Chinese Journal of Applied Mechanics201229(4): 380-385, 483 (in Chinese).
8 李星辉, 李权, 张健. 太阳能无人机高效螺旋桨气动设计[J]. 航空工程进展202011(2): 220-225, 238.
  LI X H, LI Q, ZHANG J. Aerodynamic design of a high efficient solar powered UAV propeller[J]. Advances in Aeronautical Science and Engineering202011(2): 220-225, 238 (in Chinese).
9 焦俊, 宋笔锋, 张玉刚, 等. 高空飞艇螺旋桨优化设计与气动性能车载试验[J]. 航空动力学报201732(1): 196-202.
  JIAO J, SONG B F, ZHANG Y G, et al. Optimal design and truck-mounted testing of aerodynamic performance for the propeller of high altitude airship[J]. Journal of Aerospace Power201732(1): 196-202 (in Chinese).
10 李喜乐, 李广佳, 周波, 等. 一种新的临近空间螺旋桨地面试验方法[J]. 实验流体力学201529(3): 87-92.
  LI X L, LI G J, ZHOU B, et al. A new ground test method for near space propeller[J]. Journal of Experiments in Fluid Mechanics201529(3): 87-92 (in Chinese).
11 刘沛清, 耿欣, 胡天翔, 等. 现代航空螺旋桨气动、噪声与优化设计的研究进展[J]. 空气动力学学报202341(10): 62-78, 61.
  LIU P Q, GENG X, HU T X, et al. Research progress on aerodynamics, noise and optimization design for modern aviation propellers[J]. Acta Aerodynamica Sinica202341(10): 62-78, 61 (in Chinese).
12 宋翔, 余培汛, 白俊强, 等. 基于Hanson噪声模型的螺旋桨气动与噪声优化设计[J]. 西北工业大学学报202038(4): 685-694.
  SONG X, YU P X, BAI J Q, et al. Aerodynamic and aeroacoustic optimization of propeller based on Hanson noise model[J]. Journal of Northwestern Polytechnical University202038(4): 685-694 (in Chinese).
13 MARINUS B G, ROGER M, VAN DEN BRAEMBUSS CHE R A, et al. Multidisciplinary optimization of propeller blades: Focus on the aeroacoustic results[C]∥ 17th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2011.
14 CANARD S, LE TALLEC C, BEAUMIER P, et al . ANIBAL: A new aero-acoustic optimized propeller for light aircraft applications[C]∥ 19th AIAA Aviation Technology, Integration and Operations Conference and Aircraft Noise and Emisions Reduction Symposium. Reston: AIAA, 2010.
15 薛东文, 燕群, 陈永辉, 等. 飞机螺旋桨低噪声多学科优化设计与试验验证研究[J]. 推进技术202344(7): 185-194.
  XUE D W, YAN Q, CHEN Y H, et al. Multi-disciplinary design and experimental verification of low noise aircraft propellers[J]. Journal of Propulsion Technology202344(7): 185-194 (in Chinese).
16 口启慧, 王海峰, 江泓鑫, 等. 考虑气动-结构的高空螺旋桨多学科优化方法[J]. 航空动力学报202439(4): 80-88.
  KOU Q H, WANG H F, JIANG H X, et al. Multi-disciplinary optimization method for high-altitude propellers considering aero-structure[J]. Journal of Aerospace Power202439(4): 80-88 (in Chinese).
17 王科雷, 祝小平, 周洲, 等. 低雷诺数分布式螺旋桨滑流气动影响[J]. 航空学报201637(9): 2669-2678.
  WANG K L, ZHU X P, ZHOU Z, et al. Distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica201637(9): 2669-2678 (in Chinese).
18 王红波, 祝小平, 周洲, 等. 基于非定常面元/黏性涡粒子法的低雷诺数滑流气动干扰[J]. 航空学报201738(4): 120412.
  WANG H B, ZHU X P, ZHOU Z, et al. Aerodynamic interactions at low Reynolds number slipstream with unsteady panel/viscous vortex particle method[J]. Acta Aeronautica et Astronautica Sinica201738(4): 120412 (in Chinese).
19 WANG H B, ZHU X P, ZHOU Z. Influence analysis of propeller location parameters on wings using a panel/viscous vortex particle hybrid method[J]. The Aeronautical Journal2018122: 21-41.
20 WANG H B, GAN W B, LI D C. An investigation of the aerodynamic performance for a fuel saving double channel wing configuration[J]. Energie201912(20): 3911.
21 WANG H B, GAN W B, LI D C. An investigation of the aerodynamic performance for a propeller-aided lift-enhancing double wing configuration[J]. Aerospace Science and Technology2020105: 105991.
22 甘文彪. 近空间低雷诺数无人机气动数值模拟及设计研究[D]. 西安: 西北工业大学, 2014.
  GAN W B. Research on aerodynamic numerical simulation and design of near space low-Reynolds unmanned aerial vehicles [D]. Xi’an: Northwestern Polytechnical University, 2014 (in Chinese).
23 甘文彪, 周洲, 许晓平. 仿生全翼式太阳能无人机气动数值模拟[J]. 航空学报201536(10): 3284-3294.
  GAN W B, ZHOU Z, XU X P. Aerodynamic numerical simulation of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica201536(10): 3284-3294 (in Chinese).
24 饶崇, 张铁军, 魏闯, 等. 一种分布式电动飞机螺旋桨滑流影响机理[J]. 航空学报202142(S1): 157-167.
  RAO C, ZHANG T J, WEI C, et al. Influence mechanism of propeller slipstream of distributed electric aircraft[J]. Acta Aeronautica et Astronautica Sinica202142(S1): 157-167 (in Chinese).
25 乔宇航, 马东立, 李陟. 螺旋桨/机翼相互干扰的非定常数值模拟[J]. 航空动力学报201530(6): 1366-1373.
  QIAO Y H, MA D L, LI Z. Unsteady numerical simulation of propeller/wing interaction[J]. Journal of Aerospace Power201530(6): 1366-1373 (in Chinese).
26 BOUSQUET J M, GARDAREIN P. Improvements on computations of high speed propeller unsteady aerodynamics[J]. Aerospace Science and Technology20037(6): 465-472.
27 STüRMER A. Unsteady CFD simulations of propeller installation effects[C]∥ 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & AMP; Exhibit. Reston: AIAA, 2006.
28 STüRMER A. Unsteady Euler and Navier-Stokes simulations of propellers with the unstructured DLR TAU-Code[C]∥ Proceeding of New Results in Numerical and Experimental Fluid Mechanics. Heidelberg: Springer Berlin Heidelberg, 2006: 144-151.
29 STüRMER A, RAKOWITZ M. Unsteady simulation of a transport aircraft propeller using MEGAFLOW: RTO-MP-AVT-123[R]. Neuilly-sur-Seine: RTO, 2005.
30 CHRISTIE R J, DUBOIS A, AVIATION J, et al. Cooling of electric motors used for propulsion on SCEPTOR: NASATM-2017-219134[R]. Washington, D.C.: NASA, 2017.
31 BORER N, PATTERSON M D, VIKEN J, et al. Design and performance of the NASA SCEPTOR distributed electric propulsion flight demonstrator[C]∥ 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016
32 STOLL A M, BEVIRT J BEN, MOORE M D, et al. Drag reduction through distributed electric propulsion [C]∥ 14th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2014.
33 PATTERSON M D, BORER N K. Approach considerations in aircraft with high-lift propeller systems[C]∥ 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017.
34 PATTERSON M D, DERLAGA J M, BORER N. High-lift propeller system configuration selection for NASA’s SCEPTOR distributed electric propulsion flight demonstrator[C]∥ 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016.
35 BURGER C, HARTFIELD R. Design, testing and optimization of a constant torque propeller: AIAA 2007-3927 [R]. Reston: AIAA, 2007.
36 SANDAK Y, ROSEN A. Aeroelastically adaptive propeller using blades’ root flexibility[J]. The Aeronautical Journal2004108: 411-418.
37 CONG K, MA D, ZHANG L,et al. Design and analysis of passive variable-pitch propeller for VTOL UAVs[J].Aerospace Science and Technology2023108:108063.
38 李国强, 宋奎辉, 易仕和, 等. 基于后缘小翼的翼型反流动态失速主动控制试验研究[J]. 力学学报202355(11): 2453-2467.
  LI G Q, SONG K H, YI S H, et al. Test research for active control of airfoil reverse flow dynamic stall based on trailing edge flap[J]. Chinese Journal of Theoretical and Applied Mechanics202355(11): 2453-2467 (in Chinese).
39 刘士明. 带后缘小翼的智能旋翼振动载荷抑制研究[D]. 南京: 南京航空航天大学, 2016.
  LIU S M. Research on vibratory load control of smart rotor with trailing edge flaps[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese).
40 许成杰, 杨旭东, 朱敏. 临近空间桨梢小翼螺旋桨布局气动增效研究[J]. 航空计算技术201141(5): 61-64.
  XU C J, YANG X D, ZHU M. Aerodynamic synergistic mechanism of high altitude proplet propeller configura tions[J]. Aeronautical Computing Technique201141(5): 61-64 (in Chinese).
41 卫玉梁. 基于猫头鹰羽毛特征的无人机旋翼仿生降噪研究[D]. 合肥: 中国科学技术大学, 2022.
  WEI Y L. Research on bionic noise reduction of UAV propeller based on owl feather characteristics[D]. Hefei: University of Science and Technology of China, 2022 (in Chinese).
42 陈晨. 主/被动控制方法抑制桨尖涡机理研究[D]. 厦门: 厦门大学, 2020.
  CHEN C. Study on the mechanism of controlling tip vortex by active and passive control[D]. Xiamen: Xiamen University, 2020 (in Chinese).
43 宋笔锋, 安伟刚. 智能螺旋桨发展现状及其在临近空间飞行器中的应用[J]. 航空工程进展20134(4): 391-398, 406.
  SONG B F, AN W G. Survey on smart propeller and its applications in near-space propeller vehicle[J]. Advances in Aeronautical Science and Engineering20134(4): 391-398, 406 (in Chinese).
44 姜家文, 田希晖, 车学科, 等. 不同激励模式临近空间螺旋桨等离子体流动控制试验研究[J]. 飞机设计201636(6): 27-31.
  JIANG J W, TIAN X H, CHE X K, et al. Study on stratospheric propeller plasma flow control of different incentive model[J]. Aircraft Design201636(6): 27-31 (in Chinese).
45 李国强, 聂万胜, 程钰锋, 等. 临近空间螺旋桨低雷诺数高效翼型数值分析[J]. 航空计算技术201242(5): 46-50.
  LI G Q, NIE W S, CHENG Y F, et al. Numerical analysis of low Reynolds efficient airfoil in propeller in near space[J]. Aeronautical Computing Technique201242(5): 46-50 (in Chinese).
46 李国强, 聂万胜, 程钰锋, 等. 临近空间螺旋桨气动性能数值分析[J]. 飞机设计201232(6): 18-22.
  LI G Q, NIE W S, CHENG Y F, et al. The numerical study of propeller aerodynamics characteristic in near space[J]. Aircraft Design201232(6): 18-22 (in Chinese).
47 CHENG Y F, CHE X K, NIE W S. Numerical study on propeller flow-separation control by DBD-plasma aerodynamic actuation[J]. IEEE Transactions on Plasma Science201341(4): 892-898.
48 聂万胜, 程钰锋, 车学科. 介质阻挡放电等离子体流动控制研究进展[J]. 力学进展201242(6): 722-734.
  NIE W S, CHENG Y F, CHE X K. A review on dielectric barrier discharge plasma flow control[J]. Advances in Mechanics201242(6): 722-734 (in Chinese).
49 WANG J J, CHOI K S, FENG L H, et al. Recent developments in DBD plasma flow control[J]. Progress in Aerospace Sciences201362: 52-78.
50 MURPHY J P, KRIEGSEIS J, LAVOIE P. Scaling of maximum velocity, body force, and power consumption of dielectric barrier discharge plasma actuators via particle image velocimetry[J]. Journal of Applied Physics2013113(24): 243301-243310.
51 CORKE T, ENLOE C, WILKINSON S. Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanics201042: 505-529.
52 JOLIBOIS J, FORTE M, MOREAU é. Application of an AC barrier discharge actuator to control airflow separation above a NACA 0015 airfoil: Optimization of the actuation location along the chord[J]. Journal of Electrostatics200866(9): 496-503.
53 LITTLE J, NISHIHARA M, ADAMOVICH I, et al. High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator[J]. Experiments in Fluids201048(3): 521-537.
54 RIHERD M, ROY S, VISBAL M. Numerical investigation of serpentine plasma actuators for separation control at low Reynolds number[C]∥ 41st AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2011.
55 BENARD N, JOLIBOIS J, MOREAU E. Lift and drag performances of an axisymmetric airfoil controlled by plasma actuator[J]. Journal of Electrostatics200967(2/3): 133-139.
56 VISBAL M, GAITONDE D. Control of vortical flows using simulated plasma actuators[C]∥ Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
57 MOREAU E. Airflow control by non-thermal plasma actuators[J]. Journal of Physics D Applied Physics200740(3): 605-636.
58 杨波, 孙敏, 白敏菂. 介质阻挡放电等离子体抑制翼型流动分离的实验研究[J]. 高电压技术201440(1): 212-218.
  YANG B, SUN M, BAI M D. Experimental investigation of airfoil flow separation control by dielectric barrier discharge plasma actuator[J]. High Voltage Engineering201440(1): 212-218 (in Chinese).
59 吴云, 李应红. 等离子体流动控制研究进展与展望[J]. 航空学报201536(2): 381-405.
  WU Y, LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica201536(2): 381-405 (in Chinese).
60 VO H D. Rotating stall suppression in axial compressors with casing plasma actuation[J]. Journal of Propulsion and Power201026(4): 808-818.
61 程钰锋, 聂万胜. 等离子体提高平流层螺旋桨气动性能的数值分析[J]. 核聚变与等离子体物理201232(4): 372-378.
  CHENG Y F, NIE W S. Numerical analysis of the effect of plasma flow control on enhancing the aerodynamic characteristics of stratospheric screw propeller[J]. Nuclear Fusion and Plasma Physics201232(4): 372-378 (in Chinese).
62 程钰锋, 聂万胜, 车学科. 等离子体提高螺旋桨桨根翼型气动性能的仿真研究[J]. 核聚变与等离子体物理201232(3): 265-270.
  CHENG Y F, NIE W S, CHE X K. Numerical study on plasma flow control to enhance the aerodynamic characteristic of the aerofoil on propeller root region[J]. Nuclear Fusion and Plasma Physics201232(3): 265-270 (in Chinese).
63 祝方正, 张睿, 程钰锋. 等离子体改善平流层螺旋桨气动性能仿真[J]. 飞机设计202242(1): 15-20.
  ZHU F Z, ZHANG R, CHENG Y F. Numerical plasma flow control to enhance the aerodynamic characteristics of stratospheric screw propeller[J]. Aircraft Design202242(1): 15-20 (in Chinese).
64 陈庆亚, 田希晖, 姜家文, 等. 螺旋桨等离子体流动控制的增效实验[J]. 航空动力学报201631(5): 1205-1211.
  CHEN Q Y, TIAN X H, JIANG J W, et al. Experiment on the performance of propeller plasma flow control[J]. Journal of Aerospace Power201631(5): 1205-1211 (in Chinese).
65 张立志, 李修乾, 陈庆亚, 等. 两种翼型螺旋桨ARA-D和S1223的等离子体增效实验研究[J]. 航天器环境工程201734(1): 81-85.
  ZHANG L Z, LI X Q, CHEN Q Y, et al. Experimental study of the enhancement of plasma flow control of ARA-D and S1223 propeller airfoils[J]. Spacecraft Environment Engineering201734(1): 81-85 (in Chinese).
66 许和勇, 马成宇. 协同射流流动控制方法研究进展综述[J]. 航空工程进展202213(6): 1-16.
  XU H Y, MA C Y. Review of the co-flow jet flow control method[J]. Advances in Aeronautical Science and Engineering202213(6): 1-16 (in Chinese).
67 ZHA G C, PAXTON C. A novel airfoil circulation augment flow control method using co-flow jet[C]∥ 2nd AIAA Flow Control Conference. Reston: AIAA, 2004.
68 WANG B, ZHA G C. Detached-eddy simulation of a co-flow jet airfoil at high angle of attack[J]. Journal of Aircraft201148(5): 1495-1502.
69 GAN W B, ZHOU Z, XU X P, et al. Delayed detached-eddy simulation and application of a co-flow jet airfoil at high angle of attack[J]. Applied Mechanics and Materials2013444-445: 270-276.
70 CARR D, KUPROWICZ N, ESTEVADEORDAL J, et al. Stator diffusion enhancement using a re-circulating co-flowing steady jet (postprint) [C]∥ Proceedings of the ASME Turbo Expo 2004. New York: ASME, 2004: 309-322.
71 LIU J Q, CHEN R Q, QIU R F, et al. Study on dynamic stall control of rotor airfoil based on co-flow jet[J]. International Journal of Aerospace Engineering2020(5): 8845924.
72 XU H Y, XING S L, YE Z Y. Numerical study of the S809 airfoil aerodynamic performance using a co-flow jet active control concept[J]. Journal of Renewable and Sustainable Energy20157(2): 023131.
73 XU H Y, QIAO C L, YE Z Y. Dynamic stall control on the wind turbine airfoil via a co-flow jet[J]. Energies20169: 429.
74 KHIER W, NAGEL W E, RESCH M, et al. Time-accurate versus actuator disk simulations of complete helicopters[C]∥ Proceeding of High Performance Computing in Science and Engineering. Berlin, Heidelberg: Springer-Verlag, 2006: 209-220.
75 LEFEBVRE A, ZHA G C. Numerical simulation of pitching airfoil performance enhancement using co-flow jet flow control [C]∥ 31st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2013.
76 LEFEBVRE A, ZHA G C. Pitching airfoil performance enhancement using co-flow jet flow control at high mach number[C]∥ 52nd Aerospace Sciences Meeting. Reston: AIAA, 2014.
77 ZHA G C, PAXTON C D, CONLEY C, et al. Effect of injection slot size on the performance of co-flow jet airfoil[J]. Journal of Aircraft200643(4): 987-995.
78 ZHA G C, CARROLL B, PAXTON C D, et al. High performance airfoil using co-flow jet flow control[J]. AIAA Journal200545(8):2087-2090.
79 YANG X D, JIANG W, ZHANG S L. Analysis of co-flow jet effect on dynamic stall characteristics applying to rotor airfoils[J]. IOP Conference Series: Materials Science and Engineering2019491: 012010.
80 杨慧强, 许和勇, 叶正寅. 基于联合射流的翼型动态失速流动控制研究[J]. 航空工程进展20189(4): 566-576.
  YANG H Q, XU H Y, YE Z Y. Study on the flow control of the airfoil dynamic stall using the co-flow jet[J]. Advances in Aeronautical Science and Engineering20189(4): 566-576 (in Chinese).
81 杨慧强. 基于联合射流技术的流动控制方法研究[D]. 西安: 西北工业大学, 2018.
  Yang H Q. Numerical investigations of flow control method based on co-flow jet[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese).
82 朱敏, 杨旭东, 宋超, 等. 应用协同射流控制的临近空间螺旋桨高增效方法[J]. 航空学报201435(6): 1549-1559.
  ZHU M, YANG X D, SONG C, et al. High synergy method for near space propeller using co-flow jet control[J]. Acta Aeronautica et Astronautica Sinica201435(6): 1549-1559 (in Chinese).
83 ZHANG S L, YANG X D, SONG B F, et al. Numerical and experimental study of the co-flow jet airfoil performance enhancement:AIAA-2017-1694[R]. Reston: AIAA, 2017.
84 LI B, ABBASI A A, SHIQING Y, et al. Airfoil performance enhancement with a novel flow control method of SDBD plasma co-flow jet[C]∥ AIAA Aviation 2020 Forum. Reston: AIAA, 2020.
85 LUO Z B, ZHAO Z J, DENG X, et al. Dual synthetic jets actuator and its applications-Part I: PIV measurements and comparison to synthetic jet actuator[J]. Actuators202211(8): 205.
86 崔龙泉, 周岩, 谢玮, 等. 等离子体合成射流激波-激波干扰控制数值模拟[J]. 空军工程大学学报202324(2): 2-9.
  CUI L Q, ZHOU Y, XIE W, et al. A numerical simulation in control of shock-shock interference with hypersonic vehicle head by using plasma synthetic jet[J]. Journal of Air Force Engineering University202324(2): 2-9 (in Chinese).
87 EMERICK T, ALI M Y, FOSTER C, et al. SparkJet characterizations in quiescent and supersonic flowfields[J]. Experiments in Fluids201455(12): 1858.
88 周岩. 新型等离子体合成射流及其激波控制特性研究[D]. 长沙: 国防科技大学, 2018.
  ZHOU Y. Novel plasma synthetic jet and its application in shock wave control[D].Changsha: National University of Defense Technology, 2018 (in Chinese).
89 JABBAL M, JEYALINGAM J. Towards the noise reduction of piezoelectrical-driven synthetic jet actuators[J]. Sensors and Actuators A: Physical2017266: 273-284.
90 HOHOLIS G, STEIJL R, BADCOCK K. Circulation control as a roll effector for unmanned combat aerial vehicles[J]. Journal of Aircraft201653(6): 1875-1889.
91 DENG X, XIA Z X, LUO Z B, et al. Vector-adjusting characteristic of dual-synthetic-jet actuator[J]. AIAA Journal201553(3): 794-797.
92 王杰. 射流推力矢量技术的研究现状与发展[J]. 科技与创新2020(10): 81-83, 85.
  WANG J. Research status and development of jet thrust vector technology[J]. Science and Technology & Innovation2020(10): 81-83, 85 (in Chinese).
93 MILLER D N, YAGLE P, HAMSTRA J W. Fluidic throat skewing for thrust vectoring in fixed-geometry nozzles[C]∥ 37th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1999.
94 MASON M S, CROWTHER W. Fluidic thrust vectoring for low observable air vehicles[C]∥ AIAA Flow Control Conference, Reston: AIAA, 2004.
95 顾蕴松, 李斌斌, 程克明. 基于主动流动控制的射流矢量偏转技术[J]. 实验力学201227(1): 87-92.
  GU Y S, LI B B, CHENG K M. On the jet vector deflection based on active flow control technique[J]. Journal of Experimental Mechanics201227(1): 87-92 (in Chinese).
96 曹永飞. 射流推力矢量控制[D]. 南京: 南京航空航天大学, 2012.
  CAO Y F. Fluidic thrust vector control[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
97 罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科学技术大学, 2006.
  LUO Z B. Principle of synthetic jet and dual synthetic jets, and their applications in jet vectoring and micro-pump[D].Changsha: National University of Defense Technology, 2006 (in Chinese).
98 LUO Z B, XIA Z X, LIU B. New generation of synthetic jet actuators[J]. AIAA Journal200644(10): 2418-2419.
99 LUO Z B, XIA Z X, Xie Y G, et al. Jet vectoring control using a novel synthetic jet actuator[J]. Chinese Journal of Aeronautics200720(3): 193-201.
100 王俊伟, 夏智勋, 罗振兵, 等. 合成射流对高超声速进气道起动特性影响数值模拟研究[J]. 空气动力学学报201836(4): 613-619.
  WANG J W, XIA Z X, LUO Z B, et al. Numerical study on starting characteristics of hypersonic inlet with synthetic jet[J]. Acta Aerodynamica Sinica201836(4): 613-619 (in Chinese).
101 王林, 罗振兵, 夏智勋, 等. 合成双射流控制翼型分离流动的数值研究[J]. 空气动力学学报201230(3): 353-357, 372.
  WANG L, LUO Z B, XIA Z X, et al. Numerical simulation of separated flow control on an airfoil using dual synthetic jets[J]. Acta Aerodynamica Sinica201230(3): 353-357, 372 (in Chinese).
102 SMITH B L, GLEZER A. Jet vectoring using synthetic jets[J]. Journal of Fluid Mechanics2002458: 1-34.
103 SARY G, DUFOUR G, ROGIER F, et al. Modeling and parametric study of a plasma synthetic jet for flow control[J]. AIAA Journal201452(8): 1591-1603.
104 LAURENDEAU, CHEDEVERGNE, CASALIS. Transient ejection phase modeling of a plasma synthetic jet actuator[J]. Physics of Fluids201426(12): 125101.
105 李玉杰, 罗振兵, 邓雄, 等. 合成双射流控制NACA0015翼型大攻角流动分离试验研究[J]. 航空学报201637(3): 817-825.
  LI Y J, LUO Z B, DENG X, et al. Experimental investigation on flow separation control of stalled NACA0015 airfoil using dual synthetic jet actuator[J]. Acta Aeronautica et Astronautica Sinica201637(3): 817-825 (in Chinese).
106 邓雄, 赵志杰, 王秋旺, 等.基于前缘合成双射流的飞翼布局纵向气动控制特性研究[J].空气动力学学报[J], 202240(5): 79-90.
  DENG X, ZHAO Z J, WANG Q W, et al. Research on longitudinal aerodynamic control characteristics of flying wing based on leading-edge dual synthetic jets[J].Acta Aerodynamica Sinica202240(5): 79-90 (in Chinese).
107 ZHAO Z J, DENG X, LUO Z B, et al. Flight control of a flying wing aircraft based on circulation control using synthetic jet actuators[J]. Chinese Journal of Aeronautics202336(10): 152-164.
108 ZHAO Z J, LUO Z B, DENG X, et al. Effects of dual synthetic jets on longitudinal aerodynamic characteristics of a flying wing layout[J]. Aerospace Science and Technology2023132: 108043.
109 FORSTER M, STEIJL R. Numerical simulation of transonic circulation control:AIAA 2015-1709[R]. Reston: AIAA, 2015.
110 ENGLAR R J, HUSON G G. Development of advanced circulation control wing high-lift airfoils[J]. Journal of Aircraft198421(7): 476-483.
111 ENGLAR R J, JONES G S, ALLAN B G, et al. 2-D circulation control airfoil benchmark experiments intended for CFD code validation[C]∥ 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
112 LIU Y, SANKAR L N, ENGLAR R J, et al. Computational evaluation of the steady and pulsed jet effects on the performance of a circulation control wing section[C]∥ 42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2004.
113 JONES G S, ENGLAR R J. Advances in pneumatic-controlled high-lift systems through pulsed blowing[C]∥ 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003.
114 JONES G S, VIKEN S A, WASHBURN A E, et al. An active flow circulation controlled flap concept for general aviation aircraft applications[C]∥ 1st Flow Control Conference. Reston: AIAA, 2002.
115 宋彦萍, 杨晓光, 李亚超, 等. 环量控制翼型中柯恩达效应的数值模拟[J]. 工程热物理学报201031(9): 1475-1479.
  SONG Y P, YANG X G, LI Y C, et al. Numerical simulation of coanda effect in circulation control airfoil[J]. Journal of Engineering Thermophysics201031(9): 1475-1479 (in Chinese).
116 冯立好, 王晋军, KWINGSO C. 等离子体环量控制翼型增升的实验研究[J]. 力学学报201345(6): 815-821.
  FENG L H, WANG J J, KWINGSO C. Experimental investigation on lift increment of a plasma circulation control airfoil[J]. Chinese Journal of Theoretical and Applied Mechanics201345(6): 815-821 (in Chinese).
117 许建华, 李凯, 宋文萍, 等. 低雷诺数下协同射流关键参数对翼型气动性能的影响[J]. 航空学报201839(8): 122018.
  XU J H, LI K, SONG W P, et al. Influence of co-flow jet key parameters on airfoil aerodynamic performance at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica201839(8): 122018 (in Chinese).
118 王畅, 何龙, 徐栋霞, 等. 共轴刚性旋翼桨毂流动控制减阻研究[J]. 航空学报202445(9): 529084.
  WANG C, HE L, XU D X, et al. Study on flow control drag reduction of hub on coaxial rigid rotor aircraft[J]. Acta Aeronautica et Astronautica Sinica202445(9): 529084 (in Chinese).
119 段登燕, 裴家涛, 祖瑞, 等. 电机-变距螺旋桨动力系统功率优化控制[J]. 航空学报202142(3): 623933.
  DUAN D Y, PEI J T, ZU R, et al. Power optimization and control of motor variable-pitch propeller propulsion system[J]. Acta Aeronautica et Astronautica Sinica202142(3): 623933 (in Chinese).
120 刘坤澎, 王海峰, 江泓鑫, 等. 螺旋桨多设计点气动优化方法和变桨距角策略[J]. 航空学报202445(9):528831.
  LIU K P, WANG H F, JIANG H X, et al. Aerodynamic optimization method of propeller multi-design points and variable pitch angle strategy[J]. Acta Aeronautica et Astronautica Sinica202445(9):528831 (in Chinese).
Outlines

/