ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Dynamic modeling and bifurcation analysis of agile turn of parafoil⁃missile system
Received date: 2023-05-19
Revised date: 2023-07-13
Accepted date: 2023-08-08
Online published: 2023-10-31
Supported by
Open Fund of Laboratory of Aerospace Servo Actuation and Transmission(LASAT-2022-A03-01)
Traditional projectiles are difficult to realize the quick, small-radius and large-angle agile turn due to the limitation of maneuverability. In this paper, a parafoil-missile system is proposed to realize agile turn by adding a suspending parafoil as the control surface on the missile. Firstly, a dynamic model of the parafoil-missile system composed of missile, parafoil, ropes and connection point is proposed, and the dynamic model of the 9-DOF parafoil-missile system is presented. The motion of the parafoil-missile system is compared and analyzed when the flap deflection is 0°, 25° and 50° through trajectory simulation in the longitudinal plane. The analysis results show that the parafoil-missile system can realize agile turn. By means of bifurcation analysis of the dynamic model of the parafoil-missile system, the bifurcation diagram of the system is studied when the flap deflection is different and the rigging angle is taken as the continuous variable parameter. The target stable equilibrium corresponding to the minimum turn radius and the maximum turn final speed of the missile to realize agile turn is obtained. The variation of the attractive region near the target stable equilibrium is analyzed. The trajectory simulation shows that the missile with a mass of 73 kg can achieve the minimum turn radius of 14.50 m and the minimum velocity loss of 20.4 m/s by selecting the flap deflection and rigging angle reasonably. The parafoil-missile system proposed can provide important reference to improving the performance of agile turn of traditional tactical missiles.
Hongmiao ZHOU , Jianqiao YU , Yong YU . Dynamic modeling and bifurcation analysis of agile turn of parafoil⁃missile system[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(7) : 229012 -229012 . DOI: 10.7527/S1000-6893.2023.29012
1 | THUKRAL A, INNOCENTI M. A sliding mode missile pitch autopilot synthesis for high angle of attack maneuvering[J]. IEEE Transactions on Control Systems Technology, 1998, 6(3): 359-371. |
2 | 赵新运, 于剑桥. 导弹敏捷转弯段的新型非奇异终端滑模控制[J]. 宇航学报, 2022, 43(4): 454-464. |
ZHAO X Y, YU J Q. Novel non-singular terminal sliding mode control for missile’s agile turn[J]. Journal of Astronautics, 2022, 43(4): 454-464 (in Chinese). | |
3 | 李政, 于剑桥, 赵新运. 空空导弹敏捷转弯固定时间收敛滑模控制[J]. 航空学报, 2023, 44(8): 327262. |
LI Z, YU J Q, ZHAO X Y. Fixed-time convergent sliding mode control for agile turn of air-to-air missiles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 327262 (in Chinese). | |
4 | 郭锐, 刘荣忠. 末敏弹刚柔耦合系统动力学模型及仿真[J]. 兵工学报, 2007, 28(1): 10-14. |
GUO R, LIU R Z. Dynamics model and simulation of rigid and flexible coupling system for terminal-sensitive submunition[J]. Acta Armamentarii, 2007, 28(1): 10-14 (in Chinese). | |
5 | 唐乾刚, 王昱, 张青斌, 等. 伞-弹动力学及运动学在末敏弹目标识别中的应用[J]. 兵工学报, 2007, 28(7): 796-799. |
TANG Q G, WANG Y, ZHANG Q B, et al. Application of dynamics and kinematics of parachute-bomb system in target identification for a target sensitive projectile[J]. Acta Armamentarii, 2007, 28(7): 796-799 (in Chinese). | |
6 | 唐乾刚, 王昱, 张青斌, 等. 伞-弹动力学及运动学在末敏弹目标识别中的应用[J]. 兵工学报, 2007, 28(7): 796-799. |
TANG Q G, WANG Y, ZHANG Q B, et al. Application of dynamics and kinematics of parachute-bomb system in target identification for a target sensitive projectile[J]. Acta Armamentarii, 2007, 28(7): 796-799 (in Chinese). | |
7 | 马晓冬, 郭锐, 刘荣忠, 等. 旋转伞-子弹系统动力学建模与仿真[J]. 弹道学报, 2015, 27(3): 12-17. |
MA X D, GUO R, LIU R Z, et al. Dynamics modeling and simulation for rotating parachute-submunition system[J]. Journal of Ballistics, 2015, 27(3): 12-17 (in Chinese). | |
8 | BROWN G, HAGGARD R, FOGLEMAN J. Parafoils for shipboard recovery of UAVs[C]∥ Proceedings of the 11th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1991. |
9 | WYLLIE T, DOWNS P, WYLLIE T, et al. Precision parafoil recovery-Providing flexibility for battlefield UAV systems? [C]∥ Proceedings of the 14th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1997. |
10 | PATEL S, HACKETT N, JORGENSEN D, et al. Qualification of the guided parafoil air delivery system-light (GPADS-light)[C]∥ Proceedings of the 14th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1997. |
11 | MORTALONI P, YAKIMENKO O, DOBROKHODOV V, et al. On the development of a six-degree-of-freedom model of a low-aspect-ratio parafoil delivery system[C]∥ Proceedings of the 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2003. |
12 | SLEGERS N, BEYER E, COSTELLO M. Use of variable incidence angle for glide slope control of autonomous parafoils[J]. Journal of Guidance Control Dynamics, 2008, 31(3): 585-596. |
13 | 陈奇, 赵敏, 赵志豪, 等. 多自主翼伞系统建模及其集结控制[J]. 航空学报, 2016, 37(10): 3121-3130. |
CHEN Q, ZHAO M, ZHAO Z H, et al. Multiple autonomous parafoils system modeling and rendezvous control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3121-3130 (in Chinese). | |
14 | WISE K. Dynamics of a UAV with parafoil under powered flight[C]∥ Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2006. |
15 | REDELINGHUYS C. A flight simulation algorithm for a parafoil suspending an air vehicle[J]. Journal of Guidance Control Dynamics, 2007, 30(3): 791-803. |
16 | PRAKASH O, ANANTHKRISHNAN N. Modeling and simulation of 9-DOF parafoil-payload system flight dynamics[C]∥ Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit. Reston: AIAA, 2006. |
17 | PRAKASH O, DAFTARY A, ANANTHKRISHNAN N. Trim and stability analysis of parafoil/payload system using bifurcation methods[C]∥ Proceedings of the 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005. |
18 | YANG H, SONG L, CHEN W F. Research on parafoil stability using a rapid estimate model[J]. Chinese Journal of Aeronautics, 2017, 30(5): 1670-1680. |
19 | NICOLAIDES J D. Parafoil wind tunnel tests: AD731564[R]. Indiana: University of Notre Dame, 1971. |
20 | 孙青林, 梁炜, 陈增强, 等. 襟翼偏转翼伞气动性能数值模拟分析[J]. 哈尔滨工业大学学报, 2017, 49(4): 48-54. |
SUN Q L, LIANG W, CHEN Z Q, et al. Numerical simulation analysis for aerodynamic performance of parafoil with flap deflection[J]. Journal of Harbin Institute of Technology, 2017, 49(4): 48-54 (in Chinese). | |
21 | 朱虹, 孙青林, 邬婉楠, 等. 伞翼无人机精确建模与控制[J]. 航空学报, 2019, 40(6): 122593. |
ZHU H, SUN Q L, WU W N, et al. Accurate modeling and control for parawing unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6): 122593 (in Chinese). | |
22 | LISSAMAN P, BROWN G. Apparent mass effects on parafoil dynamics[C]∥ Proceedings of the Aerospace Design Conference. Reston: AIAA, 1993. |
23 | BARROWS T M. Apparent mass of parafoils with spanwise camber[J]. Journal of Aircraft, 2002, 39(3): 445-451. |
24 | SLEGERS N, GORMAN C. Comparison and analysis of multi-body parafoil models with varying degrees of freedom[C]∥ Proceedings of the 21st AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2011. |
25 | 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 115-116. |
WANG F J. Computational fluid dynamics analysis: Principle and application of CFD software[M]. Beijing: Tsinghua University Press, 2004: 115-116 (in Chinese). | |
26 | MANSOUR N N, KIM J, MOIN P. Near-wall k-epsilon turbulence modeling[J]. AIAA Journal, 1989, 27(8): 1068-1073. |
27 | EUGENE L F. Missile design guide[M]. Reston: AIAA, 2022: 145-147. |
28 | DHOOGE A, GOVAERTS W, KUZNETSOV Y A. MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs[J]. ACM Transactions on Mathematical Software, 29(2): 141-164. |
/
〈 |
|
〉 |