ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Nonlinear characterization modeling and dynamic performance accurate prediction of aerospace electromechanical actuator
Received date: 2024-01-20
Revised date: 2024-02-15
Accepted date: 2024-03-06
Online published: 2024-04-19
Supported by
National Natural Science Foundation of China(92371101);The Fundamental Research Funds for the Central Universities(YWF-23-L-911)
Aiming at the difficulties in predicting the dynamic performance of aerospace Electro-Mechanical Actuator (EMA) due to the multiple nonlinear coupling of mechanics, electricity, magnetism and controlling, a V-shape requirement model, a multi-level architecture model and an accurate prediction model for EMA in Thrust Vector Control (TVC) are built based on Model-Based System Engineering (MBSE), Analytic Hierarchy Process (AHP) and incremental modeling respectively. The first-level model enables the position enveloping prediction by adjusting motor power and reduction ratio. The second-level model realizes position response prediction and dimension estimation with incremental RL electromagnetic framework and trigonometric kinematic functions. The third-level model constructs the coupling relations of multi-physical domain, and the fourth-level model refines the non-linearity of key parameters which enables accurate prediction of rotating speed and current dynamic response. The prediction accuracy of the multi-level model is verified by three sets of time domain tests. The design instance indicates that the multi-level models under multiple constraints obtain 3.6 times more than the individual fourth-level model with a 50.6% reduction in calculating time. The optimal power-weight ratio reaches 488.95 W/kg, and the phase frequency bandwidth reaches 9.87 Hz, which strongly supports the rapid and accurate iteration of EMA design, and provides a feasible digital transformation practice of rocket system.
Menglong JIANG , Jian FU , Yinan LIU , Mingwei SUN , Yuping HUANG , Zhiyuan YU . Nonlinear characterization modeling and dynamic performance accurate prediction of aerospace electromechanical actuator[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2024 , 45(15) : 630203 -630203 . DOI: 10.7527/S1000-6893.2024.30203
1 | HOROWITZ M C. The state of the missile technology control regime[EB/OL]. (2017-01-01)[2023-12-28]. . |
2 | MIRANDA D. 2020 NASA technology taxonomy[EB/OL]. (2019-10-11)[2023-12-28]. . |
3 | 黄玉平, 崔佩娟, 安林雪, 等. 高品质航天伺服产品及其实现途径探索[J]. 导弹与航天运载技术(中英文), 2022(6): 38-42. |
HUANG Y P, CUI P J, AN L X, et al. High-quality aerospace servo products and its realization way to explore[J]. Missiles and Space Vehicles, 2022(6): 38-42 (in Chinese). | |
4 | ANNAZ F Y, KALUARACHCHI M M. Progress in redundant electromechanical actuators for aerospace applications[J]. Aerospace, 2023, 10(9): 787-809. |
5 | 张旭辉. 智能化战争中的下一代武器系统形态构想[J]. 导弹与航天运载技术, 2021(2): 1-4. |
ZHANG X H. The form visualization of next generation weapon system in intelligent war[J]. Missiles and Space Vehicles, 2021(2): 1-4 (in Chinese). | |
6 | LI J M, YU Z Y, HUANG Y P, et al. A review of electromechanical actuation system for more electric aircraft[C]∥2016 IEEE International Conference on Aircraft Utility Systems (AUS). Piscataway: IEEE Press, 2016: 490-497. |
7 | MARé J C. Practical considerations in the modelling and simulation of electromechanical actuators[J]. Actuators, 2020, 9(4): 94. |
8 | 李建明, 蒋孟龙, 安林雪, 等. 机电作动器动力学建模与电流跳变现象分析[J]. 电机与控制学报, 2020, 24(1): 104-110. |
LI J M, JIANG M L, AN L X, et al. Dynamic modeling and current jump analysis of electro-mechanical actuator[J]. Electric Machines and Control, 2020, 24(1): 104-110 (in Chinese). | |
9 | GAO F, LI P P, LI Y. Dynamic analysis of ball screw feed system with abrupt-change-nonlinear drive stiffness[J]. Industrial Lubrication and Tribology, 2021, 73(10): 1258-1266. |
10 | 卢晋, 吴志刚, 杨超. 电动舵机模块化建模及动刚度仿真[J]. 北京航空航天大学学报, 2021, 47(4): 765-778. |
LU J, WU Z G, YANG C. Modular modeling and dynamic stiffness simulation of electromechanical actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 765-778 (in Chinese). | |
11 | MARé J C. A preliminary top-down parametric design of electromechanical actuator position control[J]. Aerospace, 2022, 9(6): 314. |
12 | 魏泽宇, 许文波, 张国林, 等. 航天机电伺服系统的自抗扰控制[J]. 控制理论与应用, 2021, 38(1): 73-80. |
WEI Z Y, XU W B, ZHANG G L, et al. Active disturbance rejection control of aerospace electromechanical servo system[J]. Control Theory & Applications, 2021, 38(1): 73-80 (in Chinese). | |
13 | LIU C Q, LUO G Z, CHEN Z, et al. Finite-time convergent multiple disturbance rejection control for electromechanical actuators[J]. IEEE Transactions on Power Electronics, 2021, 36(6): 6863-6878. |
14 | RUAN W, DONG Q L, ZHANG X Y, et al. Friction compensation control of electromechanical actuator based on neural network adaptive sliding mode[J]. Sensors, 2021, 21(4): 1508. |
15 | 丁汉. 机械工程学科发展战略报告(2021~2035)[M]. 北京: 科学出版社, 2021: 243-264. |
DING H. Report on the development strategy of mechanical engineering discipline (2021—2035)[M]. Beijing: Science Press, 2021: 243-264 (in Chinese). | |
16 | 彭坤, 韩冬, 刘霞, 等. 基于SysML和Modelica的载人月球探测航天器总体设计与仿真验证[J]. 宇航学报, 2023, 44(9): 1460-1470. |
PENG K, HAN D, LIU X, et al. System design and simulation verification of manned lunar exploration spacecraft based on SysML and modelica[J]. Journal of Astronautics, 2023, 44(9): 1460-1470 (in Chinese). | |
17 | 何巍, 胡久辉, 赵婷, 等. 基于模型的运载火箭总体设计方法初探[J]. 导弹与航天运载技术, 2021(1): 12-17, 32. |
HE W, HU J H, ZHAO T, et al. Research on model based launch vehicle overall design[J]. Missiles and Space Vehicles, 2021(1): 12-17, 32 (in Chinese). | |
18 | 毕文豪, 范秋岑, 李德林, 等. 基于多视角的民机正向设计建模方法[J]. 航空学报, 2023, 44(10): 227536. |
BI W H, FAN Q C, LI D L, et al. Modeling approach for forward design of civil aircraft based on multiple perspectives[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(10): 227536 (in Chinese). | |
19 | 马红鹏, 吴帅, 焦宗夏, 等. 垂直起降运载火箭多执行装置系统优化研究[J]. 导弹与航天运载技术, 2022(3): 53-59. |
MA H P, WU S, JIAO Z X, et al. System optimization study on the multiple actuators of vertical landing launch vehicles[J]. Missiles and Space Vehicles, 2022(3): 53-59 (in Chinese). | |
20 | FU J, MARE J C, YU L M, et al. Multi-level virtual prototyping of electromechanical actuation system for more electric aircraft[J]. Chinese Journal of Aeronautics, 2018, 31(5): 892-913. |
21 | FU J, MARé J C, FU Y L. Modelling and simulation of flight control electromechanical actuators with special focus on model architecting, multidisciplinary effects and power flows[J]. Chinese Journal of Aeronautics, 2017, 30(1): 47-65. |
22 | SONG Z Y, PAN H, ZHAO Y X, et al. Reviews and challenges in reliability design of long March launcher control systems[J]. AIAA Journal, 2022, 60(2): 537-550. |
23 | 朱康武, 傅俊勇, 曾凡铨, 等. 运载火箭电液推力矢量控制系统总体设计策略研究[J]. 宇航学报, 2014, 35(6): 685-692. |
ZHU K W, FU J Y, ZENG F Q, et al. Study on the architecture design strategy of electric-hydraulic thrust vector control system for launch vehicle[J]. Journal of Astronautics, 2014, 35(6): 685-692 (in Chinese). | |
24 | MARé J C. Aerospace actuators: Signal-by-wire and power-by-wire[M]. Hoboken: Wiley, 2017: 178. |
25 | 白龙, 孙楚, 周元钧. 航空机电作动器的混合整流全状态反馈控制[J]. 航空学报, 2016, 37(6): 1940-1952. |
BAI L, SUN C, ZHOU Y J. Full-state feedback control of a novel hybrid rectifier applied to aircraft electric actuator load[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1940-1952 (in Chinese). | |
26 | QIN X F, SHEN J X. Mathematical modeling of high-speed PMSM considering rotor eddy current reaction effect[J]. IEEE Transactions on Energy Conversion, 2023, 38(4): 2947-2958. |
27 | 曹萌萌, 胡健, 周海波, 等. 基于神经网络的机电作动器滑模输出反馈控制[J]. 机械工程学报, 2023, 59(10): 357-365. |
CAO M M, HU J, ZHOU H B, et al. Sliding mode output feedback control of electromechanical actuator based on neural network[J]. Journal of Mechanical Engineering, 2023, 59(10): 357-365 (in Chinese). | |
28 | LIANG M N, ZHOU D J. A nonlinear friction identification method combining separable least squares approach and kinematic orthogonal property[J]. International Journal of Precision Engineering and Manufacturing, 2022, 23(2): 139-152. |
29 | 袁登科, 蓝海荃, 胡宗杰. 基于LabVIEW的直流电机控制的建模与仿真[J]. 机电一体化, 2021, 27(5): 37-43. |
YUAN D K, LAN H Q, HU Z J. Modelling and simulation of direct current motor control based on LabVIEW[J]. Mechatronics, 2021, 27(5): 37-43 (in Chinese). | |
30 | RODRíGUEZ-ABREO O, RODRíGUEZ-RESéNDIZ J, áLVAREZ-ALVARADO J M, et al. Metaheuristic parameter identification of motors using dynamic response relations[J]. Sensors, 2022, 22(11): 4050. |
31 | 张学磊, 王姝, 刘正宇, 等. 考虑不对称饱和的内置式永磁同步电机径向电磁力解析建模[J]. 现代防御技术, 2023(12): 1-10. |
ZHANG X L, WANG S, LIU Z Y, et al. Analytical modeling of radial electromagnetic force of IPMSM considering asymmetric saturation[J]. Modern Defence Technology, 2023(12): 1-10 (in Chinese). | |
32 | KOLANO K. New method of vector control in PMSM motors[J]. IEEE Access, 2023, 11: 43882-43890. |
33 | JIANG M L, SONG H Z, AN L X, et al. Health monitoring for electromechanical actuators under aerospace long storage condition[C]∥Proceedings of 2021 Chinese Intelligent Systems Conference. Singapore: Springer, 2022: 561-570. |
34 | 武宇飞, 龙腾, 史人赫, 等. 跨域变体飞行器气动力热非层次多模型融合降阶方法[J]. 航空学报, 2023, 44(21): 528259. |
WU Y F, LONG T, SHI R H, et al. Non-hierarchical multi-model fusion order reduction based on aerodynamic and aerothermodynamic characteristics for cross-domain morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(21): 528259 (in Chinese). |
/
〈 |
|
〉 |